Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
---
|
4 |
+
# Model Card for Model ViT fine tuning on CiFAR10
|
5 |
+
|
6 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
7 |
+
|
8 |
+
It's a toy experiemnt of fine tuning ViT by using huggingface transformers.
|
9 |
+
|
10 |
+
## Model Details
|
11 |
+
|
12 |
+
It's fine tuned on CiFAR10 for 1000 steps, and achieved accuracy of 98.7% on test split.
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** verypro
|
21 |
+
- **Model type:** Vision Transformer
|
22 |
+
- **License:** MIT
|
23 |
+
- **Finetuned from model [optional]:** google/vit-base-patch16-224
|
24 |
+
|
25 |
+
## Uses
|
26 |
+
|
27 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
28 |
+
|
29 |
+
```
|
30 |
+
from transformers import ViTImageProcessor, ViTForImageClassification
|
31 |
+
from torchvision import datasets
|
32 |
+
|
33 |
+
# # 初始化模型和特征提取器
|
34 |
+
image_processor = ViTImageProcessor.from_pretrained('verypro/vit-base-patch16-224-cifar10')
|
35 |
+
model = ViTForImageClassification.from_pretrained('verypro/vit-base-patch16-224-cifar10')
|
36 |
+
|
37 |
+
|
38 |
+
# 加载 CIFAR10 数据集
|
39 |
+
test_dataset = datasets.CIFAR10(root='./data', train=False, download=True)
|
40 |
+
|
41 |
+
sample = test_dataset[0]
|
42 |
+
image = sample[0]
|
43 |
+
gt_label = sample[1]
|
44 |
+
|
45 |
+
# 保存原始图像,并打印其标签
|
46 |
+
image.save("original.png")
|
47 |
+
print(f"Ground truth class: '{test_dataset.classes[gt_label]}'")
|
48 |
+
|
49 |
+
inputs = image_processor(image, return_tensors="pt")
|
50 |
+
outputs = model(**inputs)
|
51 |
+
|
52 |
+
logits = outputs.logits
|
53 |
+
print(logits)
|
54 |
+
|
55 |
+
predicted_class_idx = logits.argmax(-1).item()
|
56 |
+
predicted_class_label = test_dataset.classes[predicted_class_idx]
|
57 |
+
print(f"Predicted class: '{predicted_class_label}', confidence: {logits[0, predicted_class_idx]:.2f}")
|
58 |
+
```
|