--- language: - en - is - multilingual license: agpl-3.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy base_model: vesteinn/XLMR-ENIS model-index: - name: XLMR-ENIS-finetuned-ner results: - task: type: token-classification name: Token Classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - type: precision value: 0.9398313331170938 name: Precision - type: recall value: 0.9517943664285128 name: Recall - type: f1 value: 0.9457750214207026 name: F1 - type: accuracy value: 0.9853686150987764 name: Accuracy --- # XLMR-ENIS-finetuned-ner This model is a fine-tuned version of [vesteinn/XLMR-ENIS](https://huggingface.co/vesteinn/XLMR-ENIS) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0671 - Precision: 0.9398 - Recall: 0.9518 - F1: 0.9458 - Accuracy: 0.9854 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2825 | 1.0 | 878 | 0.0712 | 0.9220 | 0.9379 | 0.9299 | 0.9815 | | 0.0688 | 2.0 | 1756 | 0.0689 | 0.9354 | 0.9477 | 0.9415 | 0.9839 | | 0.039 | 3.0 | 2634 | 0.0671 | 0.9398 | 0.9518 | 0.9458 | 0.9854 | ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3