--- license: mit base_model: facebook/bart-large-cnn tags: - generated_from_trainer metrics: - rouge - precision - recall - f1 model-index: - name: BART_CNNDM_ORIGIN results: [] --- # BART_CNNDM_ORIGIN This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6921 - Rouge1: 0.3423 - Rouge2: 0.144 - Rougel: 0.2434 - Rougelsum: 0.3142 - Gen Len: 73.4636 - Precision: 0.8695 - Recall: 0.8927 - F1: 0.8808 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|:---------:|:------:|:------:| | 1.2137 | 1.0 | 625 | 1.6451 | 0.3343 | 0.1359 | 0.2346 | 0.3043 | 72.7655 | 0.8678 | 0.891 | 0.8791 | | 1.054 | 2.0 | 1250 | 1.6921 | 0.3423 | 0.144 | 0.2434 | 0.3142 | 73.4636 | 0.8695 | 0.8927 | 0.8808 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.15.0