ColPali
Safetensors
English
vidore
vidore-experimental
manu commited on
Commit
41623f0
1 Parent(s): 82c047d

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: vidore/colpaligemma-3b-pt-448-base
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./models/colpaligemma-3b-pt-448-base",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": "gaussian",
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": "(.*(language_model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)",
23
+ "task_type": "FEATURE_EXTRACTION",
24
+ "use_dora": false,
25
+ "use_rslora": false
26
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:caed65068cae6d50e572d984914324a7d8a9360cdd7f4263ea82f1792614391f
3
+ size 78625112
checkpoint-18000/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ./models/colpaligemma-3b-pt-448-base
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-18000/adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./models/colpaligemma-3b-pt-448-base",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": "gaussian",
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": "(.*(language_model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)",
23
+ "task_type": "FEATURE_EXTRACTION",
24
+ "use_dora": false,
25
+ "use_rslora": false
26
+ }
checkpoint-18000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da7776b2c26c1a62f0bbc5421c7201d2e30f7a5b05c1d4623e0e1b0f75ae3f60
3
+ size 78625112
checkpoint-18000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d104d7b059bb1f146e59e053261c664c659adb9ca34a3dc82dcd25d491adb0ea
3
+ size 157385722
checkpoint-18000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83c65b52f653f8c152a0e5f0fe6aaf87b7eef99af937d84679e6fdfa74192435
3
+ size 14244
checkpoint-18000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:099cb1a8ae8c67ac7d0a23b3d3641d0efb236ad5bf903c5a94993ec5b5058192
3
+ size 1064
checkpoint-18000/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-18000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5caac953cc790faad6d9fc47d5b6516882f63815bf7f5962c459a1fa37b07e8
3
+ size 5048
git_hash.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 69293a9893f663429e172e512ee5908af0cffef5
preprocessor_config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_valid_processor_keys": [
3
+ "images",
4
+ "do_resize",
5
+ "size",
6
+ "resample",
7
+ "do_rescale",
8
+ "rescale_factor",
9
+ "do_normalize",
10
+ "image_mean",
11
+ "image_std",
12
+ "return_tensors",
13
+ "data_format",
14
+ "input_data_format",
15
+ "do_convert_rgb"
16
+ ],
17
+ "do_convert_rgb": null,
18
+ "do_normalize": true,
19
+ "do_rescale": true,
20
+ "do_resize": true,
21
+ "image_mean": [
22
+ 0.5,
23
+ 0.5,
24
+ 0.5
25
+ ],
26
+ "image_processor_type": "SiglipImageProcessor",
27
+ "image_seq_length": 1024,
28
+ "image_std": [
29
+ 0.5,
30
+ 0.5,
31
+ 0.5
32
+ ],
33
+ "processor_class": "PaliGemmaProcessor",
34
+ "resample": 3,
35
+ "rescale_factor": 0.00392156862745098,
36
+ "size": {
37
+ "height": 448,
38
+ "width": 448
39
+ }
40
+ }
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"validation_set": {"ndcg_at_1": 0.822, "ndcg_at_3": 0.86002, "ndcg_at_5": 0.87224, "ndcg_at_10": 0.88182, "ndcg_at_20": 0.88399, "ndcg_at_100": 0.89029, "ndcg_at_1000": 0.89199, "map_at_1": 0.822, "map_at_3": 0.851, "map_at_5": 0.8577, "map_at_10": 0.86159, "map_at_20": 0.86226, "map_at_100": 0.86313, "map_at_1000": 0.86322, "recall_at_1": 0.822, "recall_at_3": 0.886, "recall_at_5": 0.916, "recall_at_10": 0.946, "recall_at_20": 0.954, "recall_at_100": 0.988, "recall_at_1000": 1.0, "precision_at_1": 0.822, "precision_at_3": 0.29533, "precision_at_5": 0.1832, "precision_at_10": 0.0946, "precision_at_20": 0.0477, "precision_at_100": 0.00988, "precision_at_1000": 0.001, "mrr_at_1": 0.818, "mrr_at_3": 0.849, "mrr_at_5": 0.8554999999999998, "mrr_at_10": 0.8591857142857141, "mrr_at_20": 0.8603808764335078, "mrr_at_100": 0.8610268592085819, "mrr_at_1000": 0.8611122735411757, "naucs_at_1_max": 0.2153985688690058, "naucs_at_1_std": -0.8663183431820963, "naucs_at_1_diff1": 0.9298345185234652, "naucs_at_3_max": 0.10585679324754012, "naucs_at_3_std": -1.0737759501889552, "naucs_at_3_diff1": 0.9178001231957661, "naucs_at_5_max": 0.024365301676223024, "naucs_at_5_std": -1.1983460050687003, "naucs_at_5_diff1": 0.9034613845538216, "naucs_at_10_max": -0.10167029774873008, "naucs_at_10_std": -1.3703184977694771, "naucs_at_10_diff1": 0.9105197634609385, "naucs_at_20_max": -0.1524174887346353, "naucs_at_20_std": -1.4552226687776701, "naucs_at_20_diff1": 0.9264198432996398, "naucs_at_100_max": -0.33800186741361815, "naucs_at_100_std": -1.7399626517273559, "naucs_at_100_diff1": 0.931917211328972, "naucs_at_1000_max": 1.0, "naucs_at_1000_std": 1.0, "naucs_at_1000_diff1": 1.0}, "syntheticDocQA_energy": {"ndcg_at_1": 0.89, "ndcg_at_3": 0.93917, "ndcg_at_5": 0.93917, "ndcg_at_10": 0.93917, "ndcg_at_20": 0.94156, "ndcg_at_100": 0.94521, "ndcg_at_1000": 0.94521, "map_at_1": 0.89, "map_at_3": 0.92833, "map_at_5": 0.92833, "map_at_10": 0.92833, "map_at_20": 0.92892, "map_at_100": 0.92938, "map_at_1000": 0.92938, "recall_at_1": 0.89, "recall_at_3": 0.97, "recall_at_5": 0.97, "recall_at_10": 0.97, "recall_at_20": 0.98, "recall_at_100": 1.0, "recall_at_1000": 1.0, "precision_at_1": 0.89, "precision_at_3": 0.32333, "precision_at_5": 0.194, "precision_at_10": 0.097, "precision_at_20": 0.049, "precision_at_100": 0.01, "precision_at_1000": 0.001, "mrr_at_1": 0.9, "mrr_at_3": 0.9333333333333332, "mrr_at_5": 0.9333333333333332, "mrr_at_10": 0.9333333333333332, "mrr_at_20": 0.9338888888888889, "mrr_at_100": 0.9343481252149982, "mrr_at_1000": 0.9343481252149982, "naucs_at_1_max": 0.28399622025599114, "naucs_at_1_std": -0.7361051456060473, "naucs_at_1_diff1": 0.9759470835838844, "naucs_at_3_max": 0.7424525365701778, "naucs_at_3_std": -1.3478057889822568, "naucs_at_3_diff1": 1.0, "naucs_at_5_max": 0.742452536570183, "naucs_at_5_std": -1.3478057889822557, "naucs_at_5_diff1": 1.0, "naucs_at_10_max": 0.742452536570183, "naucs_at_10_std": -1.3478057889822557, "naucs_at_10_diff1": 1.0, "naucs_at_20_max": 0.9346405228758136, "naucs_at_20_std": -1.1517273576097127, "naucs_at_20_diff1": 1.0, "naucs_at_100_max": NaN, "naucs_at_100_std": NaN, "naucs_at_100_diff1": NaN, "naucs_at_1000_max": NaN, "naucs_at_1000_std": NaN, "naucs_at_1000_diff1": NaN}, "syntheticDocQA_healthcare_industry": {"ndcg_at_1": 0.92, "ndcg_at_3": 0.95024, "ndcg_at_5": 0.95454, "ndcg_at_10": 0.96077, "ndcg_at_20": 0.96077, "ndcg_at_100": 0.96077, "ndcg_at_1000": 0.96077, "map_at_1": 0.92, "map_at_3": 0.94333, "map_at_5": 0.94583, "map_at_10": 0.94826, "map_at_20": 0.94826, "map_at_100": 0.94826, "map_at_1000": 0.94826, "recall_at_1": 0.92, "recall_at_3": 0.97, "recall_at_5": 0.98, "recall_at_10": 1.0, "recall_at_20": 1.0, "recall_at_100": 1.0, "recall_at_1000": 1.0, "precision_at_1": 0.92, "precision_at_3": 0.32333, "precision_at_5": 0.196, "precision_at_10": 0.1, "precision_at_20": 0.05, "precision_at_100": 0.01, "precision_at_1000": 0.001, "mrr_at_1": 0.93, "mrr_at_3": 0.9483333333333333, "mrr_at_5": 0.9508333333333333, "mrr_at_10": 0.9533730158730158, "mrr_at_20": 0.9533730158730158, "mrr_at_100": 0.9533730158730158, "mrr_at_1000": 0.9533730158730158, "naucs_at_1_max": 0.5720121381886089, "naucs_at_1_std": -0.3297152194211025, "naucs_at_1_diff1": 0.9509803921568633, "naucs_at_3_max": 0.33022097727980126, "naucs_at_3_std": -0.9192343604108318, "naucs_at_3_diff1": 0.9564270152505466, "naucs_at_5_max": 0.21825396825397442, "naucs_at_5_std": -1.7399626517273414, "naucs_at_5_diff1": 0.9346405228758136, "naucs_at_10_max": 1.0, "naucs_at_10_std": 1.0, "naucs_at_10_diff1": 1.0, "naucs_at_20_max": 1.0, "naucs_at_20_std": 1.0, "naucs_at_20_diff1": 1.0, "naucs_at_100_max": NaN, "naucs_at_100_std": NaN, "naucs_at_100_diff1": NaN, "naucs_at_1000_max": NaN, "naucs_at_1000_std": NaN, "naucs_at_1000_diff1": NaN}, "syntheticDocQA_artificial_intelligence_test": {"ndcg_at_1": 0.95, "ndcg_at_3": 0.97393, "ndcg_at_5": 0.97393, "ndcg_at_10": 0.97393, "ndcg_at_20": 0.97393, "ndcg_at_100": 0.97617, "ndcg_at_1000": 0.97617, "map_at_1": 0.95, "map_at_3": 0.96833, "map_at_5": 0.96833, "map_at_10": 0.96833, "map_at_20": 0.96833, "map_at_100": 0.96881, "map_at_1000": 0.96881, "recall_at_1": 0.95, "recall_at_3": 0.99, "recall_at_5": 0.99, "recall_at_10": 0.99, "recall_at_20": 0.99, "recall_at_100": 1.0, "recall_at_1000": 1.0, "precision_at_1": 0.95, "precision_at_3": 0.33, "precision_at_5": 0.198, "precision_at_10": 0.099, "precision_at_20": 0.0495, "precision_at_100": 0.01, "precision_at_1000": 0.001, "mrr_at_1": 0.95, "mrr_at_3": 0.9683333333333333, "mrr_at_5": 0.9683333333333333, "mrr_at_10": 0.9683333333333333, "mrr_at_20": 0.968859649122807, "mrr_at_100": 0.968859649122807, "mrr_at_1000": 0.968859649122807, "naucs_at_1_max": 0.5066293183940227, "naucs_at_1_std": -0.6262371615312773, "naucs_at_1_diff1": 0.9444444444444438, "naucs_at_3_max": 0.8692810457516356, "naucs_at_3_std": -1.7399626517274398, "naucs_at_3_diff1": 1.0, "naucs_at_5_max": 0.8692810457516413, "naucs_at_5_std": -1.7399626517273863, "naucs_at_5_diff1": 1.0, "naucs_at_10_max": 0.8692810457516413, "naucs_at_10_std": -1.7399626517273863, "naucs_at_10_diff1": 1.0, "naucs_at_20_max": 0.8692810457516413, "naucs_at_20_std": -1.7399626517273863, "naucs_at_20_diff1": 1.0, "naucs_at_100_max": NaN, "naucs_at_100_std": NaN, "naucs_at_100_diff1": NaN, "naucs_at_1000_max": NaN, "naucs_at_1000_std": NaN, "naucs_at_1000_diff1": NaN}, "syntheticDocQA_government_reports": {"ndcg_at_1": 0.86, "ndcg_at_3": 0.93047, "ndcg_at_5": 0.93478, "ndcg_at_10": 0.93834, "ndcg_at_20": 0.93834, "ndcg_at_100": 0.93834, "ndcg_at_1000": 0.93834, "map_at_1": 0.86, "map_at_3": 0.91333, "map_at_5": 0.91583, "map_at_10": 0.9175, "map_at_20": 0.9175, "map_at_100": 0.9175, "map_at_1000": 0.9175, "recall_at_1": 0.86, "recall_at_3": 0.98, "recall_at_5": 0.99, "recall_at_10": 1.0, "recall_at_20": 1.0, "recall_at_100": 1.0, "recall_at_1000": 1.0, "precision_at_1": 0.86, "precision_at_3": 0.32667, "precision_at_5": 0.198, "precision_at_10": 0.1, "precision_at_20": 0.05, "precision_at_100": 0.01, "precision_at_1000": 0.001, "mrr_at_1": 0.86, "mrr_at_3": 0.9166666666666665, "mrr_at_5": 0.9166666666666665, "mrr_at_10": 0.9183333333333333, "mrr_at_20": 0.9183333333333333, "mrr_at_100": 0.9183333333333333, "mrr_at_1000": 0.9183333333333333, "naucs_at_1_max": 0.5858043508382976, "naucs_at_1_std": 0.34131217957599924, "naucs_at_1_diff1": 0.8498337259249, "naucs_at_3_max": 1.0, "naucs_at_3_std": 1.0, "naucs_at_3_diff1": 1.0, "naucs_at_5_max": 1.0, "naucs_at_5_std": 1.0, "naucs_at_5_diff1": 1.0, "naucs_at_10_max": 1.0, "naucs_at_10_std": 1.0, "naucs_at_10_diff1": 1.0, "naucs_at_20_max": 1.0, "naucs_at_20_std": 1.0, "naucs_at_20_diff1": 1.0, "naucs_at_100_max": NaN, "naucs_at_100_std": NaN, "naucs_at_100_diff1": NaN, "naucs_at_1000_max": NaN, "naucs_at_1000_std": NaN, "naucs_at_1000_diff1": NaN}, "infovqa_subsampled": {"ndcg_at_1": 0.752, "ndcg_at_3": 0.80538, "ndcg_at_5": 0.81718, "ndcg_at_10": 0.82621, "ndcg_at_20": 0.83154, "ndcg_at_100": 0.84329, "ndcg_at_1000": 0.84596, "map_at_1": 0.752, "map_at_3": 0.79267, "map_at_5": 0.79937, "map_at_10": 0.80308, "map_at_20": 0.80469, "map_at_100": 0.80643, "map_at_1000": 0.80655, "recall_at_1": 0.752, "recall_at_3": 0.842, "recall_at_5": 0.87, "recall_at_10": 0.898, "recall_at_20": 0.918, "recall_at_100": 0.98, "recall_at_1000": 1.0, "precision_at_1": 0.752, "precision_at_3": 0.28067, "precision_at_5": 0.174, "precision_at_10": 0.0898, "precision_at_20": 0.0459, "precision_at_100": 0.0098, "precision_at_1000": 0.001, "mrr_at_1": 0.752, "mrr_at_3": 0.7933333333333331, "mrr_at_5": 0.7995333333333332, "mrr_at_10": 0.803242857142857, "mrr_at_20": 0.8049362776112772, "mrr_at_100": 0.8065472483651968, "mrr_at_1000": 0.8066659177387367, "naucs_at_1_max": 0.5521093170633048, "naucs_at_1_std": -0.07785006404638299, "naucs_at_1_diff1": 0.8997463426144405, "naucs_at_3_max": 0.6002557449502772, "naucs_at_3_std": -0.012867943736110006, "naucs_at_3_diff1": 0.85642900594669, "naucs_at_5_max": 0.6126712582389099, "naucs_at_5_std": 0.006642968229280956, "naucs_at_5_diff1": 0.8472635710582841, "naucs_at_10_max": 0.5868009030671214, "naucs_at_10_std": -0.006387547952498705, "naucs_at_10_diff1": 0.8159541858629611, "naucs_at_20_max": 0.6058049235954548, "naucs_at_20_std": 0.0355150190157345, "naucs_at_20_diff1": 0.8257953587939248, "naucs_at_100_max": 0.7703081232492869, "naucs_at_100_std": -0.2799253034547204, "naucs_at_100_diff1": 0.8830532212885076, "naucs_at_1000_max": 1.0, "naucs_at_1000_std": 1.0, "naucs_at_1000_diff1": 1.0}, "docvqa_subsampled": {"ndcg_at_1": 0.438, "ndcg_at_3": 0.50464, "ndcg_at_5": 0.52539, "ndcg_at_10": 0.54515, "ndcg_at_20": 0.55891, "ndcg_at_100": 0.58614, "ndcg_at_1000": 0.60242, "map_at_1": 0.438, "map_at_3": 0.48767, "map_at_5": 0.49927, "map_at_10": 0.50725, "map_at_20": 0.51082, "map_at_100": 0.51421, "map_at_1000": 0.51485, "recall_at_1": 0.438, "recall_at_3": 0.554, "recall_at_5": 0.604, "recall_at_10": 0.666, "recall_at_20": 0.722, "recall_at_100": 0.874, "recall_at_1000": 1.0, "precision_at_1": 0.438, "precision_at_3": 0.18467, "precision_at_5": 0.1208, "precision_at_10": 0.0666, "precision_at_20": 0.0361, "precision_at_100": 0.00874, "precision_at_1000": 0.001, "mrr_at_1": 0.438, "mrr_at_3": 0.4856666666666668, "mrr_at_5": 0.4982666666666667, "mrr_at_10": 0.5064968253968254, "mrr_at_20": 0.5101578425616352, "mrr_at_100": 0.5137831471648001, "mrr_at_1000": 0.5143743988006569, "naucs_at_1_max": 0.3411814722367848, "naucs_at_1_std": 0.19351178785768525, "naucs_at_1_diff1": 0.8626562650787815, "naucs_at_3_max": 0.25447268440039383, "naucs_at_3_std": 0.23527321240702792, "naucs_at_3_diff1": 0.7822508539209857, "naucs_at_5_max": 0.21922361789517097, "naucs_at_5_std": 0.24044767820737398, "naucs_at_5_diff1": 0.7541297238480713, "naucs_at_10_max": 0.1511643138558891, "naucs_at_10_std": 0.2974449919221844, "naucs_at_10_diff1": 0.7404250173815784, "naucs_at_20_max": 0.07575239988792164, "naucs_at_20_std": 0.40653199402762796, "naucs_at_20_diff1": 0.7356189043230615, "naucs_at_100_max": -0.06645545519625845, "naucs_at_100_std": 0.6961981935326662, "naucs_at_100_diff1": 0.6942713965850758, "naucs_at_1000_max": 1.0, "naucs_at_1000_std": 1.0, "naucs_at_1000_diff1": 1.0}, "arxivqa_subsampled": {"ndcg_at_1": 0.716, "ndcg_at_3": 0.76712, "ndcg_at_5": 0.78742, "ndcg_at_10": 0.80395, "ndcg_at_20": 0.81394, "ndcg_at_100": 0.82137, "ndcg_at_1000": 0.82402, "map_at_1": 0.716, "map_at_3": 0.755, "map_at_5": 0.7661, "map_at_10": 0.77314, "map_at_20": 0.77581, "map_at_100": 0.77698, "map_at_1000": 0.77709, "recall_at_1": 0.716, "recall_at_3": 0.802, "recall_at_5": 0.852, "recall_at_10": 0.902, "recall_at_20": 0.942, "recall_at_100": 0.98, "recall_at_1000": 1.0, "precision_at_1": 0.716, "precision_at_3": 0.26733, "precision_at_5": 0.1704, "precision_at_10": 0.0902, "precision_at_20": 0.0471, "precision_at_100": 0.0098, "precision_at_1000": 0.001, "mrr_at_1": 0.716, "mrr_at_3": 0.7533333333333331, "mrr_at_5": 0.764733333333333, "mrr_at_10": 0.7717634920634919, "mrr_at_20": 0.7747616656992816, "mrr_at_100": 0.7758456524880377, "mrr_at_1000": 0.7759607523201341, "naucs_at_1_max": 0.7289289296839049, "naucs_at_1_std": -0.07936298430464478, "naucs_at_1_diff1": 0.9118126211468693, "naucs_at_3_max": 0.7440127459185849, "naucs_at_3_std": -0.039296554366786994, "naucs_at_3_diff1": 0.8523732214704197, "naucs_at_5_max": 0.7376670092497422, "naucs_at_5_std": -0.1464476770232166, "naucs_at_5_diff1": 0.8692584394023237, "naucs_at_10_max": 0.7347605708950243, "naucs_at_10_std": -0.1508793993787991, "naucs_at_10_diff1": 0.8310752872577601, "naucs_at_20_max": 0.710067935220066, "naucs_at_20_std": -0.24474387456132013, "naucs_at_20_diff1": 0.8414308252036463, "naucs_at_100_max": 0.852007469654521, "naucs_at_100_std": 0.2826797385620789, "naucs_at_100_diff1": 0.8095238095237989, "naucs_at_1000_max": 1.0, "naucs_at_1000_std": 1.0, "naucs_at_1000_diff1": 1.0}, "tabfquad_subsampled": {"ndcg_at_1": 0.82857, "ndcg_at_3": 0.87759, "ndcg_at_5": 0.89097, "ndcg_at_10": 0.90108, "ndcg_at_20": 0.90465, "ndcg_at_100": 0.90682, "ndcg_at_1000": 0.90682, "map_at_1": 0.82857, "map_at_3": 0.86607, "map_at_5": 0.87357, "map_at_10": 0.87758, "map_at_20": 0.87853, "map_at_100": 0.87889, "map_at_1000": 0.87889, "recall_at_1": 0.82857, "recall_at_3": 0.91071, "recall_at_5": 0.94286, "recall_at_10": 0.975, "recall_at_20": 0.98929, "recall_at_100": 1.0, "recall_at_1000": 1.0, "precision_at_1": 0.82857, "precision_at_3": 0.30357, "precision_at_5": 0.18857, "precision_at_10": 0.0975, "precision_at_20": 0.04946, "precision_at_100": 0.01, "precision_at_1000": 0.001, "mrr_at_1": 0.8285714285714286, "mrr_at_3": 0.8648809523809524, "mrr_at_5": 0.873095238095238, "mrr_at_10": 0.8768296485260769, "mrr_at_20": 0.8780735435199719, "mrr_at_100": 0.8784422839749192, "mrr_at_1000": 0.8784422839749192, "naucs_at_1_max": 0.5117778966425275, "naucs_at_1_std": 0.18279912771560283, "naucs_at_1_diff1": 0.8180752139565501, "naucs_at_3_max": 0.5747899159663853, "naucs_at_3_std": 0.3599813258636801, "naucs_at_3_diff1": 0.799458450046687, "naucs_at_5_max": 0.7672152194211035, "naucs_at_5_std": 0.5452264239028954, "naucs_at_5_diff1": 0.8789098972922513, "naucs_at_10_max": 0.9176337201547285, "naucs_at_10_std": 0.8259303721488543, "naucs_at_10_diff1": 0.8522742430305419, "naucs_at_20_max": 0.8513849984438296, "naucs_at_20_std": 0.7424525365701908, "naucs_at_20_diff1": 0.9564270152505505, "naucs_at_100_max": 1.0, "naucs_at_100_std": 1.0, "naucs_at_100_diff1": 1.0, "naucs_at_1000_max": NaN, "naucs_at_1000_std": NaN, "naucs_at_1000_diff1": NaN}, "tatdqa": {"ndcg_at_1": 0.546, "ndcg_at_3": 0.65066, "ndcg_at_5": 0.67483, "ndcg_at_10": 0.69932, "ndcg_at_20": 0.71343, "ndcg_at_100": 0.72476, "ndcg_at_1000": 0.72826, "map_at_1": 0.546, "map_at_3": 0.62528, "map_at_5": 0.63862, "map_at_10": 0.64883, "map_at_20": 0.65269, "map_at_100": 0.65429, "map_at_1000": 0.65446, "recall_at_1": 0.546, "recall_at_3": 0.72399, "recall_at_5": 0.78292, "recall_at_10": 0.85809, "recall_at_20": 0.91401, "recall_at_100": 0.97474, "recall_at_1000": 1.0, "precision_at_1": 0.546, "precision_at_3": 0.24133, "precision_at_5": 0.15658, "precision_at_10": 0.08581, "precision_at_20": 0.0457, "precision_at_100": 0.00975, "precision_at_1000": 0.001, "mrr_at_1": 0.5460012026458209, "mrr_at_3": 0.6248747243936668, "mrr_at_5": 0.6380737622770104, "mrr_at_10": 0.6487178936517485, "mrr_at_20": 0.6526362286471448, "mrr_at_100": 0.6541821288626329, "mrr_at_1000": 0.6543520127179482, "naucs_at_1_max": 0.24133986493040024, "naucs_at_1_std": -0.12843954118121406, "naucs_at_1_diff1": 0.7071602689895572, "naucs_at_3_max": 0.26030616268930545, "naucs_at_3_std": -0.11795132646338957, "naucs_at_3_diff1": 0.5997176411168043, "naucs_at_5_max": 0.2730219894711174, "naucs_at_5_std": -0.10596692743471213, "naucs_at_5_diff1": 0.5663532060729257, "naucs_at_10_max": 0.36225362853714277, "naucs_at_10_std": 0.02304171698956151, "naucs_at_10_diff1": 0.5517101887320957, "naucs_at_20_max": 0.4125290416811556, "naucs_at_20_std": 0.167993127442173, "naucs_at_20_diff1": 0.5211985072803259, "naucs_at_100_max": 0.3575181920149435, "naucs_at_100_std": 0.2654763254976142, "naucs_at_100_diff1": 0.5593828030956866, "naucs_at_1000_max": NaN, "naucs_at_1000_std": NaN, "naucs_at_1000_diff1": NaN}, "shift_project": {"ndcg_at_1": 0.64, "ndcg_at_3": 0.79488, "ndcg_at_5": 0.8078, "ndcg_at_10": 0.81451, "ndcg_at_20": 0.8173, "ndcg_at_100": 0.82289, "ndcg_at_1000": 0.82437, "map_at_1": 0.64, "map_at_3": 0.75833, "map_at_5": 0.76583, "map_at_10": 0.76875, "map_at_20": 0.76966, "map_at_100": 0.77041, "map_at_1000": 0.7705, "recall_at_1": 0.64, "recall_at_3": 0.9, "recall_at_5": 0.93, "recall_at_10": 0.95, "recall_at_20": 0.96, "recall_at_100": 0.99, "recall_at_1000": 1.0, "precision_at_1": 0.64, "precision_at_3": 0.3, "precision_at_5": 0.186, "precision_at_10": 0.095, "precision_at_20": 0.048, "precision_at_100": 0.0099, "precision_at_1000": 0.001, "mrr_at_1": 0.64, "mrr_at_3": 0.7616666666666667, "mrr_at_5": 0.7666666666666666, "mrr_at_10": 0.7711111111111112, "mrr_at_20": 0.7711111111111112, "mrr_at_100": 0.7718950246765373, "mrr_at_1000": 0.7719893642991787, "naucs_at_1_max": 0.11254630220973243, "naucs_at_1_std": -0.10817154170392139, "naucs_at_1_diff1": 0.747333631370545, "naucs_at_3_max": 0.18342670401493752, "naucs_at_3_std": -0.27189542483660173, "naucs_at_3_diff1": 0.6793183940242762, "naucs_at_5_max": -0.14785914365746142, "naucs_at_5_std": -0.6669334400426802, "naucs_at_5_diff1": 0.7159530478858213, "naucs_at_10_max": -0.2681605975723533, "naucs_at_10_std": -0.47301587301586673, "naucs_at_10_diff1": 0.6578898225957086, "naucs_at_20_max": -0.5852007469654444, "naucs_at_20_std": -0.8085901027077429, "naucs_at_20_diff1": 0.6050420168067251, "naucs_at_100_max": 0.7222222222222041, "naucs_at_100_std": -0.17133520074697067, "naucs_at_100_diff1": 1.0, "naucs_at_1000_max": NaN, "naucs_at_1000_std": NaN, "naucs_at_1000_diff1": NaN}}
special_tokens_map.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ {
4
+ "content": "<image>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ }
10
+ ],
11
+ "bos_token": {
12
+ "content": "<bos>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "eos_token": {
19
+ "content": "<eos>",
20
+ "lstrip": false,
21
+ "normalized": false,
22
+ "rstrip": false,
23
+ "single_word": false
24
+ },
25
+ "pad_token": {
26
+ "content": "<pad>",
27
+ "lstrip": false,
28
+ "normalized": false,
29
+ "rstrip": false,
30
+ "single_word": false
31
+ },
32
+ "unk_token": {
33
+ "content": "<unk>",
34
+ "lstrip": false,
35
+ "normalized": false,
36
+ "rstrip": false,
37
+ "single_word": false
38
+ }
39
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ffd310e50986db7a039948ab83441d612689e7f989198e31b5c8984ca458adf6
3
+ size 17763459
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
training_config.yml ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ config:
2
+ (): colpali_engine.utils.train_colpali_engine_models.ColModelTrainingConfig
3
+ output_dir: !path ../../../models/right_pad/train_colpali_hardneg_long
4
+ processor:
5
+ () : colpali_engine.utils.wrapper.AutoProcessorWrapper
6
+ pretrained_model_name_or_path: "./models/colpaligemma-3b-pt-448-base" # "./models/paligemma-3b-mix-448"
7
+ max_length: 50
8
+ model:
9
+ (): colpali_engine.utils.wrapper.AllPurposeWrapper
10
+ class_to_instanciate: !ext colpali_engine.models.paligemma_colbert_architecture.ColPali
11
+ pretrained_model_name_or_path: "./models/colpaligemma-3b-pt-448-base"
12
+ torch_dtype: !ext torch.bfloat16
13
+ # device_map: "auto"
14
+ # quantization_config:
15
+ # (): transformers.BitsAndBytesConfig
16
+ # load_in_4bit: true
17
+ # bnb_4bit_quant_type: "nf4"
18
+ # bnb_4bit_compute_dtype: "bfloat16"
19
+ # bnb_4bit_use_double_quant: true
20
+
21
+ dataset_loading_func: !ext colpali_engine.utils.dataset_transformation.load_train_set_ir_negs
22
+ eval_dataset_loader: !import ../data/test_data.yaml
23
+
24
+ max_length: 50
25
+ run_eval: true
26
+ add_suffix: true
27
+ loss_func:
28
+ (): colpali_engine.loss.colbert_loss.ColbertPairwiseNegativeCELoss
29
+ in_batch_term: true
30
+ tr_args:
31
+ (): transformers.training_args.TrainingArguments
32
+ output_dir: null
33
+ overwrite_output_dir: true
34
+ num_train_epochs: 5
35
+ per_device_train_batch_size: 4
36
+ # 6 x 8 gpus = 48 batch size
37
+ # gradient_accumulation_steps: 4
38
+ per_device_eval_batch_size: 4
39
+ eval_strategy: "steps"
40
+ # dataloader_num_workers: 8
41
+ # bf16: true
42
+ save_steps: 500
43
+ logging_steps: 10
44
+ eval_steps: 50
45
+ warmup_steps: 1000
46
+ learning_rate: 5e-5
47
+ save_total_limit: 1
48
+ resume_from_checkpoint: true
49
+ # optim: "paged_adamw_8bit"
50
+
51
+ peft_config:
52
+ (): peft.LoraConfig
53
+ r: 32
54
+ lora_alpha: 32
55
+ lora_dropout: 0.1
56
+ init_lora_weights: "gaussian"
57
+ bias: "none"
58
+ task_type: "FEATURE_EXTRACTION"
59
+ target_modules: '(.*(language_model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)'
60
+ # target_modules: '(.*(language_model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)'
61
+