Vihang D commited on
Commit
5242895
·
1 Parent(s): 16cfed1

Add bengali lora model

Browse files
Files changed (3) hide show
  1. README.md +90 -0
  2. adapter_config.json +21 -0
  3. adapter_model.bin +3 -0
README.md CHANGED
@@ -1,3 +1,93 @@
1
  ---
2
  license: other
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: other
3
  ---
4
+ # Hugging Face Model - Bengali Finetuned
5
+
6
+ This repository contains a Hugging Face model that has been fine-tuned on a Bengali dataset. The model uses the `peft` library for generating responses.
7
+
8
+ ## Usage
9
+
10
+ To use the model, first import the necessary libraries:
11
+
12
+ ```python
13
+ from peft import PeftModel
14
+ from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
15
+ ```
16
+
17
+ Next, load the tokenizer and model:
18
+
19
+ ```python
20
+ tokenizer = LlamaTokenizer.from_pretrained("yahma/llama-7b-hf")
21
+ model = LlamaForCausalLM.from_pretrained(
22
+ "yahma/llama-7b-hf",
23
+ load_in_8bit=True,
24
+ device_map="auto",
25
+ )
26
+ ```
27
+
28
+ Then, load the `PeftModel` with the specified pre-trained model and path to the peft model:
29
+
30
+ ```python
31
+ model = PeftModel.from_pretrained(model, "./bengali-dolly-alpaca-lora-7b")
32
+ ```
33
+
34
+ Next, define a function to generate a prompt:
35
+
36
+ ```python
37
+ def generate_prompt(instruction, input=None):
38
+ if input:
39
+ return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
40
+
41
+ ### Instruction:
42
+ {instruction}
43
+
44
+ ### Input:
45
+ {input}
46
+
47
+ ### Response:"""
48
+ else:
49
+ return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
50
+
51
+ ### Instruction:
52
+ {instruction}
53
+
54
+ ### Response:"""
55
+ ```
56
+
57
+ Finally, define a function to evaluate the model:
58
+
59
+ ```python
60
+ generation_config = GenerationConfig(
61
+ temperature=0.1,
62
+ top_p=0.75,
63
+ num_beams=4,
64
+ )
65
+
66
+ def evaluate(model, instruction, input=None):
67
+ prompt = generate_prompt(instruction, input)
68
+ inputs = tokenizer(prompt, return_tensors="pt")
69
+ input_ids = inputs["input_ids"].cuda()
70
+ generation_output = model.generate(
71
+ input_ids=input_ids,
72
+ generation_config=generation_config,
73
+ return_dict_in_generate=True,
74
+ output_scores=True,
75
+ max_new_tokens=256
76
+ )
77
+ for s in generation_output.sequences:
78
+ output = tokenizer.decode(s)
79
+ print("Response:", output.split("### Response:")[1].strip())
80
+
81
+ instruct =input("Instruction: ")
82
+ evaluate(model, instruct)
83
+ ```
84
+
85
+ To generate a response, simply run the `evaluate` function with an instruction and optional input:
86
+
87
+ ```python
88
+ instruct = "Write a response that appropriately completes the request."
89
+ input = "This is a sample input."
90
+ evaluate(model, instruct, input)
91
+ ```
92
+
93
+ This will output a response that completes the request.
adapter_config.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "base_model_name_or_path": "yahma/llama-7b-hf",
3
+ "bias": "none",
4
+ "enable_lora": null,
5
+ "fan_in_fan_out": false,
6
+ "inference_mode": true,
7
+ "init_lora_weights": true,
8
+ "lora_alpha": 16,
9
+ "lora_dropout": 0.05,
10
+ "merge_weights": false,
11
+ "modules_to_save": null,
12
+ "peft_type": "LORA",
13
+ "r": 16,
14
+ "target_modules": [
15
+ "q_proj",
16
+ "k_proj",
17
+ "v_proj",
18
+ "o_proj"
19
+ ],
20
+ "task_type": "CAUSAL_LM"
21
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d348d189011539f0e36e32503fb33fb62283b8800bd54462d859e1eef6c1ff0f
3
+ size 67201357