--- language: - ru license: apache-2.0 tags: - generated_from_trainer - named-entity-recognition - russian - ner datasets: - RCC-MSU/collection3 metrics: - precision - recall - f1 - accuracy thumbnail: Sberbank RuBERT-base fintuned on Collection3 dataset base_model: sberbank-ai/ruBert-base model-index: - name: sberbank-rubert-base-collection3 results: - task: type: token-classification name: Token Classification dataset: name: RCC-MSU/collection3 type: named-entity-recognition config: default split: validation args: default metrics: - type: precision value: 0.938019472809309 name: Precision - type: recall value: 0.9594364828758805 name: Recall - type: f1 value: 0.9486071085494716 name: F1 - type: accuracy value: 0.9860420020488805 name: Accuracy - task: type: token-classification name: Token Classification dataset: name: RCC-MSU/collection3 type: named-entity-recognition config: default split: test args: default metrics: - type: precision value: 0.9419896321895829 name: Precision - type: recall value: 0.9537615596100975 name: Recall - type: f1 value: 0.947839046199702 name: F1 - type: accuracy value: 0.9847255179564897 name: Accuracy --- # sberbank-rubert-base-collection3 This model is a fine-tuned version of [sberbank-ai/ruBert-base](https://huggingface.co/sberbank-ai/ruBert-base) on the collection3 dataset. It achieves the following results on the validation set: - Loss: 0.0772 - Precision: 0.9380 - Recall: 0.9594 - F1: 0.9486 - Accuracy: 0.9860 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0899 | 1.0 | 2326 | 0.0760 | 0.9040 | 0.9330 | 0.9182 | 0.9787 | | 0.0522 | 2.0 | 4652 | 0.0680 | 0.9330 | 0.9339 | 0.9335 | 0.9821 | | 0.0259 | 3.0 | 6978 | 0.0745 | 0.9308 | 0.9512 | 0.9409 | 0.9838 | | 0.0114 | 4.0 | 9304 | 0.0731 | 0.9372 | 0.9573 | 0.9471 | 0.9857 | | 0.0027 | 5.0 | 11630 | 0.0772 | 0.9380 | 0.9594 | 0.9486 | 0.9860 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.7.0 - Datasets 2.10.1 - Tokenizers 0.13.2