vilsonrodrigues commited on
Commit
c671d0e
Β·
1 Parent(s): b8fbcf0

synchronizing readme

Browse files
Files changed (1) hide show
  1. README.md +23 -4
README.md CHANGED
@@ -1,9 +1,22 @@
1
  ---
2
  datasets:
3
- - tiiuae/falcon-refinedweb
4
  language:
5
- - en
6
  inference: true
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  license: apache-2.0
8
  ---
9
 
@@ -22,12 +35,16 @@ Tutorial: https://medium.com/@vilsonrodrigues/run-your-private-llm-falcon-7b-ins
22
 
23
  *Paper coming soon 😊.*
24
 
 
 
25
  ## Why use Falcon-7B-Instruct?
26
 
27
  * **You are looking for a ready-to-use chat/instruct model based on [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b).**
28
  * **Falcon-7B is a strong base model, outperforming comparable open-source models** (e.g., [MPT-7B](https://huggingface.co/mosaicml/mpt-7b), [StableLM](https://github.com/Stability-AI/StableLM), [RedPajama](https://huggingface.co/togethercomputer/RedPajama-INCITE-Base-7B-v0.1) etc.), thanks to being trained on 1,500B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) enhanced with curated corpora. See the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
29
  * **It features an architecture optimized for inference**, with FlashAttention ([Dao et al., 2022](https://arxiv.org/abs/2205.14135)) and multiquery ([Shazeer et al., 2019](https://arxiv.org/abs/1911.02150)).
30
 
 
 
31
  πŸ’¬ **This is an instruct model, which may not be ideal for further finetuning.** If you are interested in building your own instruct/chat model, we recommend starting from [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b).
32
 
33
  πŸ”₯ **Looking for an even more powerful model?** [Falcon-40B-Instruct](https://huggingface.co/tiiuae/falcon-40b-instruct) is Falcon-7B-Instruct's big brother!
@@ -43,7 +60,6 @@ pipeline = transformers.pipeline(
43
  model=model,
44
  tokenizer=tokenizer,
45
  torch_dtype=torch.bfloat16,
46
- trust_remote_code=True,
47
  device_map="auto",
48
  )
49
  sequences = pipeline(
@@ -60,6 +76,10 @@ for seq in sequences:
60
 
61
  πŸ’₯ **Falcon LLMs require PyTorch 2.0 for use with `transformers`!**
62
 
 
 
 
 
63
 
64
  # Model Card for Falcon-7B-Instruct
65
 
@@ -109,7 +129,6 @@ pipeline = transformers.pipeline(
109
  model=model,
110
  tokenizer=tokenizer,
111
  torch_dtype=torch.bfloat16,
112
- trust_remote_code=True,
113
  device_map="auto",
114
  )
115
  sequences = pipeline(
 
1
  ---
2
  datasets:
3
+ - tiiuae/falcon-refinedweb
4
  language:
5
+ - en
6
  inference: true
7
+ widget:
8
+ - text: "Hey Falcon! Any recommendations for my holidays in Abu Dhabi?"
9
+ example_title: "Abu Dhabi Trip"
10
+ - text: "What's the Everett interpretation of quantum mechanics?"
11
+ example_title: "Q/A: Quantum & Answers"
12
+ - text: "Give me a list of the top 10 dive sites you would recommend around the world."
13
+ example_title: "Diving Top 10"
14
+ - text: "Can you tell me more about deep-water soloing?"
15
+ example_title: "Extreme sports"
16
+ - text: "Can you write a short tweet about the Apache 2.0 release of our latest AI model, Falcon LLM?"
17
+ example_title: "Twitter Helper"
18
+ - text: "What are the responsabilities of a Chief Llama Officer?"
19
+ example_title: "Trendy Jobs"
20
  license: apache-2.0
21
  ---
22
 
 
35
 
36
  *Paper coming soon 😊.*
37
 
38
+ πŸ€— To get started with Falcon (inference, finetuning, quantization, etc.), we recommend reading [this great blogpost fron HF](https://huggingface.co/blog/falcon)!
39
+
40
  ## Why use Falcon-7B-Instruct?
41
 
42
  * **You are looking for a ready-to-use chat/instruct model based on [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b).**
43
  * **Falcon-7B is a strong base model, outperforming comparable open-source models** (e.g., [MPT-7B](https://huggingface.co/mosaicml/mpt-7b), [StableLM](https://github.com/Stability-AI/StableLM), [RedPajama](https://huggingface.co/togethercomputer/RedPajama-INCITE-Base-7B-v0.1) etc.), thanks to being trained on 1,500B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) enhanced with curated corpora. See the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
44
  * **It features an architecture optimized for inference**, with FlashAttention ([Dao et al., 2022](https://arxiv.org/abs/2205.14135)) and multiquery ([Shazeer et al., 2019](https://arxiv.org/abs/1911.02150)).
45
 
46
+ ⚠️ Falcon is now available as a core model in the `transformers` library! To use the in-library version, please install the latest version of `transformers` with `pip install git+https://github.com/ huggingface/transformers.git`, then simply remove the `trust_remote_code=True` argument from `from_pretrained()`.
47
+
48
  πŸ’¬ **This is an instruct model, which may not be ideal for further finetuning.** If you are interested in building your own instruct/chat model, we recommend starting from [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b).
49
 
50
  πŸ”₯ **Looking for an even more powerful model?** [Falcon-40B-Instruct](https://huggingface.co/tiiuae/falcon-40b-instruct) is Falcon-7B-Instruct's big brother!
 
60
  model=model,
61
  tokenizer=tokenizer,
62
  torch_dtype=torch.bfloat16,
 
63
  device_map="auto",
64
  )
65
  sequences = pipeline(
 
76
 
77
  πŸ’₯ **Falcon LLMs require PyTorch 2.0 for use with `transformers`!**
78
 
79
+ For fast inference with Falcon, check-out [Text Generation Inference](https://github.com/huggingface/text-generation-inference)! Read more in this [blogpost]((https://huggingface.co/blog/falcon).
80
+
81
+ You will need **at least 16GB of memory** to swiftly run inference with Falcon-7B-Instruct.
82
+
83
 
84
  # Model Card for Falcon-7B-Instruct
85
 
 
129
  model=model,
130
  tokenizer=tokenizer,
131
  torch_dtype=torch.bfloat16,
 
132
  device_map="auto",
133
  )
134
  sequences = pipeline(