Upload 3 files
Browse files- __init__.py +0 -0
- tokenization_phobert.py +383 -0
- tokenization_phobert_fast.py +328 -0
__init__.py
ADDED
File without changes
|
tokenization_phobert.py
ADDED
@@ -0,0 +1,383 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright (c) 2020, VinAI Research and the HuggingFace Inc. team.
|
3 |
+
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" Tokenization classes for PhoBERT"""
|
17 |
+
|
18 |
+
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from shutil import copyfile
|
22 |
+
from typing import List, Optional, Tuple
|
23 |
+
|
24 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
25 |
+
from transformers.utils import logging
|
26 |
+
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
VOCAB_FILES_NAMES = {
|
31 |
+
"vocab_file": "vocab.txt",
|
32 |
+
"merges_file": "bpe.codes",
|
33 |
+
}
|
34 |
+
|
35 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
36 |
+
"vocab_file": {
|
37 |
+
"vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt",
|
38 |
+
"vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt",
|
39 |
+
},
|
40 |
+
"merges_file": {
|
41 |
+
"vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes",
|
42 |
+
"vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes",
|
43 |
+
},
|
44 |
+
}
|
45 |
+
|
46 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
47 |
+
"vinai/phobert-base": 256,
|
48 |
+
"vinai/phobert-large": 256,
|
49 |
+
}
|
50 |
+
|
51 |
+
|
52 |
+
def get_pairs(word):
|
53 |
+
"""
|
54 |
+
Return set of symbol pairs in a word.
|
55 |
+
|
56 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
57 |
+
"""
|
58 |
+
pairs = set()
|
59 |
+
prev_char = word[0]
|
60 |
+
for char in word[1:]:
|
61 |
+
pairs.add((prev_char, char))
|
62 |
+
prev_char = char
|
63 |
+
|
64 |
+
pairs = set(pairs)
|
65 |
+
return pairs
|
66 |
+
|
67 |
+
|
68 |
+
class PhobertTokenizer(PreTrainedTokenizer):
|
69 |
+
"""
|
70 |
+
Construct a PhoBERT tokenizer. Based on Byte-Pair-Encoding.
|
71 |
+
|
72 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
73 |
+
this superclass for more information regarding those methods.
|
74 |
+
|
75 |
+
Args:
|
76 |
+
vocab_file (`str`):
|
77 |
+
Path to the vocabulary file.
|
78 |
+
merges_file (`str`):
|
79 |
+
Path to the merges file.
|
80 |
+
bos_token (`st`, *optional*, defaults to `"<s>"`):
|
81 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
82 |
+
|
83 |
+
<Tip>
|
84 |
+
|
85 |
+
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
86 |
+
sequence. The token used is the `cls_token`.
|
87 |
+
|
88 |
+
</Tip>
|
89 |
+
|
90 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
91 |
+
The end of sequence token.
|
92 |
+
|
93 |
+
<Tip>
|
94 |
+
|
95 |
+
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
96 |
+
The token used is the `sep_token`.
|
97 |
+
|
98 |
+
</Tip>
|
99 |
+
|
100 |
+
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
101 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
102 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
103 |
+
token of a sequence built with special tokens.
|
104 |
+
cls_token (`str`, *optional*, defaults to `"<s>"`):
|
105 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
106 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
107 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
108 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
109 |
+
token instead.
|
110 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
111 |
+
The token used for padding, for example when batching sequences of different lengths.
|
112 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
113 |
+
The token used for masking values. This is the token used when training this model with masked language
|
114 |
+
modeling. This is the token which the model will try to predict.
|
115 |
+
"""
|
116 |
+
|
117 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
118 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
119 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
120 |
+
model_input_names = ["input_ids", "attention_mask"]
|
121 |
+
|
122 |
+
def __init__(
|
123 |
+
self,
|
124 |
+
vocab_file,
|
125 |
+
merges_file,
|
126 |
+
bos_token="<s>",
|
127 |
+
eos_token="</s>",
|
128 |
+
sep_token="</s>",
|
129 |
+
cls_token="<s>",
|
130 |
+
unk_token="<unk>",
|
131 |
+
pad_token="<pad>",
|
132 |
+
mask_token="<mask>",
|
133 |
+
**kwargs
|
134 |
+
):
|
135 |
+
super().__init__(
|
136 |
+
bos_token=bos_token,
|
137 |
+
eos_token=eos_token,
|
138 |
+
unk_token=unk_token,
|
139 |
+
sep_token=sep_token,
|
140 |
+
cls_token=cls_token,
|
141 |
+
pad_token=pad_token,
|
142 |
+
mask_token=mask_token,
|
143 |
+
**kwargs,
|
144 |
+
)
|
145 |
+
|
146 |
+
self.vocab_file = vocab_file
|
147 |
+
self.merges_file = merges_file
|
148 |
+
|
149 |
+
self.encoder = {}
|
150 |
+
self.encoder[self.bos_token] = 0
|
151 |
+
self.encoder[self.pad_token] = 1
|
152 |
+
self.encoder[self.eos_token] = 2
|
153 |
+
self.encoder[self.unk_token] = 3
|
154 |
+
|
155 |
+
self.add_from_file(vocab_file)
|
156 |
+
self.encoder[self.mask_token] = len(self.encoder)
|
157 |
+
|
158 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
159 |
+
|
160 |
+
with open(merges_file, encoding="utf-8") as merges_handle:
|
161 |
+
merges = merges_handle.read().split("\n")[:-1]
|
162 |
+
merges = [tuple(merge.split()[:-1]) for merge in merges]
|
163 |
+
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
164 |
+
self.cache = {}
|
165 |
+
|
166 |
+
def build_inputs_with_special_tokens(
|
167 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
168 |
+
) -> List[int]:
|
169 |
+
"""
|
170 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
171 |
+
adding special tokens. A PhoBERT sequence has the following format:
|
172 |
+
|
173 |
+
- single sequence: `<s> X </s>`
|
174 |
+
- pair of sequences: `<s> A </s></s> B </s>`
|
175 |
+
|
176 |
+
Args:
|
177 |
+
token_ids_0 (`List[int]`):
|
178 |
+
List of IDs to which the special tokens will be added.
|
179 |
+
token_ids_1 (`List[int]`, *optional*):
|
180 |
+
Optional second list of IDs for sequence pairs.
|
181 |
+
|
182 |
+
Returns:
|
183 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
184 |
+
"""
|
185 |
+
|
186 |
+
if token_ids_1 is None:
|
187 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
188 |
+
cls = [self.cls_token_id]
|
189 |
+
sep = [self.sep_token_id]
|
190 |
+
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
|
191 |
+
|
192 |
+
def get_special_tokens_mask(
|
193 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
194 |
+
) -> List[int]:
|
195 |
+
"""
|
196 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
197 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
198 |
+
|
199 |
+
Args:
|
200 |
+
token_ids_0 (`List[int]`):
|
201 |
+
List of IDs.
|
202 |
+
token_ids_1 (`List[int]`, *optional*):
|
203 |
+
Optional second list of IDs for sequence pairs.
|
204 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
205 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
206 |
+
|
207 |
+
Returns:
|
208 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
209 |
+
"""
|
210 |
+
|
211 |
+
if already_has_special_tokens:
|
212 |
+
return super().get_special_tokens_mask(
|
213 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
214 |
+
)
|
215 |
+
|
216 |
+
if token_ids_1 is None:
|
217 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
218 |
+
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
219 |
+
|
220 |
+
def create_token_type_ids_from_sequences(
|
221 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
222 |
+
) -> List[int]:
|
223 |
+
"""
|
224 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. PhoBERT does not
|
225 |
+
make use of token type ids, therefore a list of zeros is returned.
|
226 |
+
|
227 |
+
Args:
|
228 |
+
token_ids_0 (`List[int]`):
|
229 |
+
List of IDs.
|
230 |
+
token_ids_1 (`List[int]`, *optional*):
|
231 |
+
Optional second list of IDs for sequence pairs.
|
232 |
+
|
233 |
+
Returns:
|
234 |
+
`List[int]`: List of zeros.
|
235 |
+
"""
|
236 |
+
|
237 |
+
sep = [self.sep_token_id]
|
238 |
+
cls = [self.cls_token_id]
|
239 |
+
|
240 |
+
if token_ids_1 is None:
|
241 |
+
return len(cls + token_ids_0 + sep) * [0]
|
242 |
+
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
|
243 |
+
|
244 |
+
@property
|
245 |
+
def vocab_size(self):
|
246 |
+
return len(self.encoder)
|
247 |
+
|
248 |
+
def get_vocab(self):
|
249 |
+
return dict(self.encoder, **self.added_tokens_encoder)
|
250 |
+
|
251 |
+
def bpe(self, token):
|
252 |
+
if token in self.cache:
|
253 |
+
return self.cache[token]
|
254 |
+
word = tuple(token)
|
255 |
+
word = tuple(list(word[:-1]) + [word[-1] + "</w>"])
|
256 |
+
pairs = get_pairs(word)
|
257 |
+
|
258 |
+
if not pairs:
|
259 |
+
return token
|
260 |
+
|
261 |
+
while True:
|
262 |
+
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
263 |
+
if bigram not in self.bpe_ranks:
|
264 |
+
break
|
265 |
+
first, second = bigram
|
266 |
+
new_word = []
|
267 |
+
i = 0
|
268 |
+
while i < len(word):
|
269 |
+
try:
|
270 |
+
j = word.index(first, i)
|
271 |
+
except ValueError:
|
272 |
+
new_word.extend(word[i:])
|
273 |
+
break
|
274 |
+
else:
|
275 |
+
new_word.extend(word[i:j])
|
276 |
+
i = j
|
277 |
+
|
278 |
+
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
279 |
+
new_word.append(first + second)
|
280 |
+
i += 2
|
281 |
+
else:
|
282 |
+
new_word.append(word[i])
|
283 |
+
i += 1
|
284 |
+
new_word = tuple(new_word)
|
285 |
+
word = new_word
|
286 |
+
if len(word) == 1:
|
287 |
+
break
|
288 |
+
else:
|
289 |
+
pairs = get_pairs(word)
|
290 |
+
word = "@@ ".join(word)
|
291 |
+
word = word[:-4]
|
292 |
+
self.cache[token] = word
|
293 |
+
return word
|
294 |
+
|
295 |
+
def _tokenize(self, text):
|
296 |
+
"""Tokenize a string."""
|
297 |
+
split_tokens = []
|
298 |
+
|
299 |
+
words = re.findall(r"\S+\n?", text)
|
300 |
+
|
301 |
+
for token in words:
|
302 |
+
split_tokens.extend([t for t in self.bpe(token).split(" ")])
|
303 |
+
return split_tokens
|
304 |
+
|
305 |
+
def _convert_token_to_id(self, token):
|
306 |
+
"""Converts a token (str) in an id using the vocab."""
|
307 |
+
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
308 |
+
|
309 |
+
def _convert_id_to_token(self, index):
|
310 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
311 |
+
return self.decoder.get(index, self.unk_token)
|
312 |
+
|
313 |
+
def convert_tokens_to_string(self, tokens):
|
314 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
315 |
+
out_string = " ".join(tokens).replace("@@ ", "").strip()
|
316 |
+
return out_string
|
317 |
+
|
318 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
319 |
+
if not os.path.isdir(save_directory):
|
320 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory.")
|
321 |
+
return
|
322 |
+
|
323 |
+
out_vocab_file = os.path.join(
|
324 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
325 |
+
)
|
326 |
+
|
327 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
328 |
+
copyfile(self.vocab_file, out_vocab_file)
|
329 |
+
elif not os.path.isfile(self.vocab_file):
|
330 |
+
with open(out_vocab_file, "w", encoding="utf-8") as fp:
|
331 |
+
for token, value in self.encoder.items():
|
332 |
+
if token not in self.all_special_tokens:
|
333 |
+
fp.write(f"{str(token)} 1\n")
|
334 |
+
|
335 |
+
out_merges_file = os.path.join(
|
336 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
|
337 |
+
)
|
338 |
+
|
339 |
+
if os.path.abspath(self.merges_file) != os.path.abspath(out_merges_file) and os.path.isfile(self.merges_file):
|
340 |
+
copyfile(self.merges_file, out_merges_file)
|
341 |
+
elif not os.path.isfile(self.merges_file):
|
342 |
+
index = 0
|
343 |
+
with open(out_merges_file, "w", encoding="utf-8") as writer:
|
344 |
+
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
|
345 |
+
if index != token_index:
|
346 |
+
logger.warning(
|
347 |
+
f"Saving vocabulary to {out_merges_file}: BPE merge indices are not consecutive."
|
348 |
+
" Please check that the tokenizer is not corrupted!"
|
349 |
+
)
|
350 |
+
index = token_index
|
351 |
+
writer.write(" ".join(bpe_tokens) + " 1\n")
|
352 |
+
index += 1
|
353 |
+
|
354 |
+
return (out_vocab_file, out_merges_file)
|
355 |
+
|
356 |
+
# def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
|
357 |
+
# filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens))
|
358 |
+
# tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens)
|
359 |
+
# tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far)
|
360 |
+
# return ''.join(tokens_generated_so_far)
|
361 |
+
|
362 |
+
def add_from_file(self, f):
|
363 |
+
"""
|
364 |
+
Loads a pre-existing dictionary from a text file and adds its symbols to this instance.
|
365 |
+
"""
|
366 |
+
if isinstance(f, str):
|
367 |
+
try:
|
368 |
+
with open(f, "r", encoding="utf-8") as fd:
|
369 |
+
self.add_from_file(fd)
|
370 |
+
except FileNotFoundError as fnfe:
|
371 |
+
raise fnfe
|
372 |
+
except UnicodeError:
|
373 |
+
raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset")
|
374 |
+
return
|
375 |
+
|
376 |
+
lines = f.readlines()
|
377 |
+
for lineTmp in lines:
|
378 |
+
line = lineTmp.strip()
|
379 |
+
idx = line.rfind(" ")
|
380 |
+
if idx == -1:
|
381 |
+
raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'")
|
382 |
+
word = line[:idx]
|
383 |
+
self.encoder[word] = len(self.encoder)
|
tokenization_phobert_fast.py
ADDED
@@ -0,0 +1,328 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright (c) 2020, VinAI Research and the HuggingFace Inc. team.
|
3 |
+
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" Tokenization classes for PhoBERT"""
|
17 |
+
|
18 |
+
import os
|
19 |
+
from collections import defaultdict
|
20 |
+
from shutil import copyfile
|
21 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
22 |
+
|
23 |
+
from transformers.tokenization_utils_base import EncodingFast
|
24 |
+
|
25 |
+
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
26 |
+
from transformers.utils import logging
|
27 |
+
from .tokenization_phobert import PhobertTokenizer
|
28 |
+
|
29 |
+
|
30 |
+
logger = logging.get_logger(__name__)
|
31 |
+
|
32 |
+
VOCAB_FILES_NAMES = {
|
33 |
+
"vocab_file": "vocab.txt",
|
34 |
+
"merges_file": "bpe.codes",
|
35 |
+
"tokenizer_file": "tokenizer.json",
|
36 |
+
}
|
37 |
+
|
38 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
39 |
+
"vocab_file": {
|
40 |
+
"vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt",
|
41 |
+
"vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt",
|
42 |
+
},
|
43 |
+
"merges_file": {
|
44 |
+
"vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes",
|
45 |
+
"vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes",
|
46 |
+
},
|
47 |
+
"tokenizer_file": {
|
48 |
+
"vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/tokenizer.json",
|
49 |
+
"vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/tokenizer.json",
|
50 |
+
},
|
51 |
+
}
|
52 |
+
|
53 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
54 |
+
"vinai/phobert-base": 256,
|
55 |
+
"vinai/phobert-large": 256,
|
56 |
+
}
|
57 |
+
|
58 |
+
|
59 |
+
class PhobertTokenizerFast(PreTrainedTokenizerFast):
|
60 |
+
"""
|
61 |
+
Construct a "Fast" BPE tokenizer for PhoBERT (backed by HuggingFace's *tokenizers* library).
|
62 |
+
|
63 |
+
Peculiarities:
|
64 |
+
|
65 |
+
- uses BERT's pre-tokenizer: BertPreTokenizer splits tokens on spaces, and also on punctuation. Each occurrence of
|
66 |
+
a punctuation character will be treated separately.
|
67 |
+
|
68 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the methods. Users should refer to the
|
69 |
+
superclass for more information regarding methods.
|
70 |
+
|
71 |
+
Args:
|
72 |
+
vocab_file (`str`):
|
73 |
+
Path to the vocabulary file.
|
74 |
+
merges_file (`str`):
|
75 |
+
Path to the merges file.
|
76 |
+
"""
|
77 |
+
|
78 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
79 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
80 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
81 |
+
model_input_names = ["input_ids", "attention_mask"]
|
82 |
+
slow_tokenizer_class = PhobertTokenizer
|
83 |
+
|
84 |
+
def __init__(
|
85 |
+
self,
|
86 |
+
vocab_file=None,
|
87 |
+
merges_file=None,
|
88 |
+
tokenizer_file=None,
|
89 |
+
bos_token="<s>",
|
90 |
+
eos_token="</s>",
|
91 |
+
sep_token="</s>",
|
92 |
+
cls_token="<s>",
|
93 |
+
unk_token="<unk>",
|
94 |
+
pad_token="<pad>",
|
95 |
+
mask_token="<mask>",
|
96 |
+
**kwargs
|
97 |
+
):
|
98 |
+
super().__init__(
|
99 |
+
vocab_file,
|
100 |
+
merges_file,
|
101 |
+
tokenizer_file=tokenizer_file,
|
102 |
+
bos_token=bos_token,
|
103 |
+
eos_token=eos_token,
|
104 |
+
sep_token=sep_token,
|
105 |
+
cls_token=cls_token,
|
106 |
+
unk_token=unk_token,
|
107 |
+
pad_token=pad_token,
|
108 |
+
mask_token=mask_token,
|
109 |
+
**kwargs,
|
110 |
+
)
|
111 |
+
|
112 |
+
self.vocab_file = vocab_file
|
113 |
+
self.merges_file = merges_file
|
114 |
+
self.can_save_slow_tokenizer = False if not self.vocab_file else True
|
115 |
+
|
116 |
+
def get_added_vocab_hacking(self):
|
117 |
+
"""
|
118 |
+
Returns the added tokens in the vocabulary as a dictionary of token to index.
|
119 |
+
|
120 |
+
Returns:
|
121 |
+
`Dict[str, int], Dict[int, int]`: The added tokens, and their original and new ids
|
122 |
+
"""
|
123 |
+
base_vocab_size = self._tokenizer.get_vocab_size(with_added_tokens=False)
|
124 |
+
full_vocab_size = self._tokenizer.get_vocab_size(with_added_tokens=True)
|
125 |
+
if full_vocab_size == base_vocab_size:
|
126 |
+
return {}, {}
|
127 |
+
|
128 |
+
# Tokens in added_vocab should have ids that are equal to or larger than the size of base_vocab
|
129 |
+
added_vocab = dict(
|
130 |
+
(self._tokenizer.id_to_token(index), index + 1 - base_vocab_size + self.mask_token_id)
|
131 |
+
for index in range(base_vocab_size, full_vocab_size)
|
132 |
+
)
|
133 |
+
|
134 |
+
id_mapping = dict((index, self._tokenizer.token_to_id(tok)) for tok, index in added_vocab.items())
|
135 |
+
|
136 |
+
return added_vocab, id_mapping
|
137 |
+
|
138 |
+
def _decode(
|
139 |
+
self,
|
140 |
+
token_ids: Union[int, List[int]],
|
141 |
+
skip_special_tokens: bool = False,
|
142 |
+
clean_up_tokenization_spaces: bool = True,
|
143 |
+
**kwargs
|
144 |
+
) -> str:
|
145 |
+
self._decode_use_source_tokenizer = kwargs.pop("use_source_tokenizer", False)
|
146 |
+
|
147 |
+
if isinstance(token_ids, int):
|
148 |
+
token_ids = [token_ids]
|
149 |
+
|
150 |
+
# Mapping ids into their original values
|
151 |
+
_, id_mapping = self.get_added_vocab_hacking()
|
152 |
+
if len(id_mapping) > 0:
|
153 |
+
token_ids = [id_mapping[id] if id in id_mapping else id for id in token_ids]
|
154 |
+
|
155 |
+
text = self._tokenizer.decode(token_ids, skip_special_tokens=skip_special_tokens)
|
156 |
+
|
157 |
+
if clean_up_tokenization_spaces:
|
158 |
+
clean_text = self.clean_up_tokenization(text)
|
159 |
+
return clean_text
|
160 |
+
else:
|
161 |
+
return text
|
162 |
+
|
163 |
+
def _convert_encoding(
|
164 |
+
self,
|
165 |
+
encoding: EncodingFast,
|
166 |
+
return_token_type_ids: Optional[bool] = None,
|
167 |
+
return_attention_mask: Optional[bool] = None,
|
168 |
+
return_overflowing_tokens: bool = False,
|
169 |
+
return_special_tokens_mask: bool = False,
|
170 |
+
return_offsets_mapping: bool = False,
|
171 |
+
return_length: bool = False,
|
172 |
+
verbose: bool = True,
|
173 |
+
) -> Tuple[Dict[str, Any], List[EncodingFast]]:
|
174 |
+
"""
|
175 |
+
Convert the encoding representation (from low-level HuggingFace tokenizer output) to a python Dict and a list
|
176 |
+
of encodings, take care of building a batch from overflowing tokens.
|
177 |
+
|
178 |
+
Overflowing tokens are converted to additional examples (like batches) so the output values of the dict are
|
179 |
+
lists (overflows) of lists (tokens).
|
180 |
+
|
181 |
+
Output shape: (overflows, sequence length)
|
182 |
+
"""
|
183 |
+
if return_token_type_ids is None:
|
184 |
+
return_token_type_ids = "token_type_ids" in self.model_input_names
|
185 |
+
if return_attention_mask is None:
|
186 |
+
return_attention_mask = "attention_mask" in self.model_input_names
|
187 |
+
|
188 |
+
if return_overflowing_tokens and encoding.overflowing is not None:
|
189 |
+
encodings = [encoding] + encoding.overflowing
|
190 |
+
else:
|
191 |
+
encodings = [encoding]
|
192 |
+
|
193 |
+
encoding_dict = defaultdict(list)
|
194 |
+
added_vocab, _ = self.get_added_vocab_hacking()
|
195 |
+
for e in encodings:
|
196 |
+
# encoding_dict["input_ids"].append(e.ids)
|
197 |
+
# Reassign ids of tokens due to the hacking strategy
|
198 |
+
ids = []
|
199 |
+
for id, token in zip(e.ids, e.tokens):
|
200 |
+
if id <= self.mask_token_id:
|
201 |
+
ids.append(id)
|
202 |
+
else:
|
203 |
+
if token.strip() in added_vocab:
|
204 |
+
ids.append(added_vocab[token.strip()])
|
205 |
+
else:
|
206 |
+
ids.append(self.unk_token_id)
|
207 |
+
|
208 |
+
encoding_dict["input_ids"].append(ids)
|
209 |
+
|
210 |
+
if return_token_type_ids:
|
211 |
+
encoding_dict["token_type_ids"].append(e.type_ids)
|
212 |
+
if return_attention_mask:
|
213 |
+
encoding_dict["attention_mask"].append(e.attention_mask)
|
214 |
+
if return_special_tokens_mask:
|
215 |
+
encoding_dict["special_tokens_mask"].append(e.special_tokens_mask)
|
216 |
+
if return_offsets_mapping:
|
217 |
+
encoding_dict["offset_mapping"].append(e.offsets)
|
218 |
+
if return_length:
|
219 |
+
# encoding_dict["length"].append(len(e.ids))
|
220 |
+
encoding_dict["length"].append(len(ids))
|
221 |
+
|
222 |
+
return encoding_dict, encodings
|
223 |
+
|
224 |
+
def build_inputs_with_special_tokens(
|
225 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
226 |
+
) -> List[int]:
|
227 |
+
"""
|
228 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
229 |
+
adding special tokens. A PhoBERT sequence has the following format:
|
230 |
+
|
231 |
+
- single sequence: `<s> X </s>`
|
232 |
+
- pair of sequences: `<s> A </s></s> B </s>`
|
233 |
+
|
234 |
+
Args:
|
235 |
+
token_ids_0 (`List[int]`):
|
236 |
+
List of IDs to which the special tokens will be added.
|
237 |
+
token_ids_1 (`List[int]`, *optional*):
|
238 |
+
Optional second list of IDs for sequence pairs.
|
239 |
+
|
240 |
+
Returns:
|
241 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
242 |
+
"""
|
243 |
+
|
244 |
+
if token_ids_1 is None:
|
245 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
246 |
+
cls = [self.cls_token_id]
|
247 |
+
sep = [self.sep_token_id]
|
248 |
+
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
|
249 |
+
|
250 |
+
def get_special_tokens_mask(
|
251 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
252 |
+
) -> List[int]:
|
253 |
+
"""
|
254 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
255 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
256 |
+
|
257 |
+
Args:
|
258 |
+
token_ids_0 (`List[int]`):
|
259 |
+
List of IDs.
|
260 |
+
token_ids_1 (`List[int]`, *optional*):
|
261 |
+
Optional second list of IDs for sequence pairs.
|
262 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
263 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
264 |
+
|
265 |
+
Returns:
|
266 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
267 |
+
"""
|
268 |
+
|
269 |
+
if already_has_special_tokens:
|
270 |
+
return super().get_special_tokens_mask(
|
271 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
272 |
+
)
|
273 |
+
|
274 |
+
if token_ids_1 is None:
|
275 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
276 |
+
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
277 |
+
|
278 |
+
def create_token_type_ids_from_sequences(
|
279 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
280 |
+
) -> List[int]:
|
281 |
+
"""
|
282 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. PhoBERT does not
|
283 |
+
make use of token type ids, therefore a list of zeros is returned.
|
284 |
+
|
285 |
+
Args:
|
286 |
+
token_ids_0 (`List[int]`):
|
287 |
+
List of IDs.
|
288 |
+
token_ids_1 (`List[int]`, *optional*):
|
289 |
+
Optional second list of IDs for sequence pairs.
|
290 |
+
|
291 |
+
Returns:
|
292 |
+
`List[int]`: List of zeros.
|
293 |
+
|
294 |
+
"""
|
295 |
+
|
296 |
+
sep = [self.sep_token_id]
|
297 |
+
cls = [self.cls_token_id]
|
298 |
+
|
299 |
+
if token_ids_1 is None:
|
300 |
+
return len(cls + token_ids_0 + sep) * [0]
|
301 |
+
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
|
302 |
+
|
303 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
304 |
+
if not self.can_save_slow_tokenizer:
|
305 |
+
raise ValueError(
|
306 |
+
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
|
307 |
+
"tokenizer."
|
308 |
+
)
|
309 |
+
|
310 |
+
if not os.path.isdir(save_directory):
|
311 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory.")
|
312 |
+
return
|
313 |
+
|
314 |
+
out_vocab_file = os.path.join(
|
315 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
316 |
+
)
|
317 |
+
|
318 |
+
out_merges_file = os.path.join(
|
319 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
|
320 |
+
)
|
321 |
+
|
322 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
323 |
+
copyfile(self.vocab_file, out_vocab_file)
|
324 |
+
|
325 |
+
if os.path.abspath(self.merges_file) != os.path.abspath(out_merges_file):
|
326 |
+
copyfile(self.merges_file, out_merges_file)
|
327 |
+
|
328 |
+
return (out_vocab_file, out_merges_file)
|