Upload 9 files
Browse files- README.md +187 -1
- config.json +30 -0
- configuration_xlm_roberta_xl.py +154 -0
- modeling_xlm_roberta_xl.py +1777 -0
- pytorch_model.bin +3 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
README.md
CHANGED
@@ -1,3 +1,189 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- multilingual
|
4 |
+
- af
|
5 |
+
- am
|
6 |
+
- ar
|
7 |
+
- as
|
8 |
+
- az
|
9 |
+
- be
|
10 |
+
- bg
|
11 |
+
- bn
|
12 |
+
- br
|
13 |
+
- bs
|
14 |
+
- ca
|
15 |
+
- cs
|
16 |
+
- cy
|
17 |
+
- da
|
18 |
+
- de
|
19 |
+
- el
|
20 |
+
- en
|
21 |
+
- eo
|
22 |
+
- es
|
23 |
+
- et
|
24 |
+
- eu
|
25 |
+
- fa
|
26 |
+
- fi
|
27 |
+
- fr
|
28 |
+
- fy
|
29 |
+
- ga
|
30 |
+
- gd
|
31 |
+
- gl
|
32 |
+
- gu
|
33 |
+
- ha
|
34 |
+
- he
|
35 |
+
- hi
|
36 |
+
- hr
|
37 |
+
- hu
|
38 |
+
- hy
|
39 |
+
- id
|
40 |
+
- is
|
41 |
+
- it
|
42 |
+
- ja
|
43 |
+
- jv
|
44 |
+
- ka
|
45 |
+
- kk
|
46 |
+
- km
|
47 |
+
- kn
|
48 |
+
- ko
|
49 |
+
- ku
|
50 |
+
- ky
|
51 |
+
- la
|
52 |
+
- lo
|
53 |
+
- lt
|
54 |
+
- lv
|
55 |
+
- mg
|
56 |
+
- mk
|
57 |
+
- ml
|
58 |
+
- mn
|
59 |
+
- mr
|
60 |
+
- ms
|
61 |
+
- my
|
62 |
+
- ne
|
63 |
+
- nl
|
64 |
+
- no
|
65 |
+
- om
|
66 |
+
- or
|
67 |
+
- pa
|
68 |
+
- pl
|
69 |
+
- ps
|
70 |
+
- pt
|
71 |
+
- ro
|
72 |
+
- ru
|
73 |
+
- sa
|
74 |
+
- sd
|
75 |
+
- si
|
76 |
+
- sk
|
77 |
+
- sl
|
78 |
+
- so
|
79 |
+
- sq
|
80 |
+
- sr
|
81 |
+
- su
|
82 |
+
- sv
|
83 |
+
- sw
|
84 |
+
- ta
|
85 |
+
- te
|
86 |
+
- th
|
87 |
+
- tl
|
88 |
+
- tr
|
89 |
+
- ug
|
90 |
+
- uk
|
91 |
+
- ur
|
92 |
+
- uz
|
93 |
+
- vi
|
94 |
+
- xh
|
95 |
+
- yi
|
96 |
+
- zh
|
97 |
+
license: mit
|
98 |
---
|
99 |
+
|
100 |
+
# XLM-RoBERTa-XL (xlarge-sized model)
|
101 |
+
|
102 |
+
XLM-RoBERTa-XL model pre-trained on 2.5TB of filtered CommonCrawl data containing 100 languages. It was introduced in the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau and first released in [this repository](https://github.com/pytorch/fairseq/tree/master/examples/xlmr).
|
103 |
+
|
104 |
+
Disclaimer: The team releasing XLM-RoBERTa-XL did not write a model card for this model so this model card has been written by the Hugging Face team.
|
105 |
+
|
106 |
+
## Model description
|
107 |
+
|
108 |
+
XLM-RoBERTa-XL is a extra large multilingual version of RoBERTa. It is pre-trained on 2.5TB of filtered CommonCrawl data containing 100 languages.
|
109 |
+
|
110 |
+
RoBERTa is a transformers model pretrained on a large corpus in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labeling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts.
|
111 |
+
|
112 |
+
More precisely, it was pretrained with the Masked language modeling (MLM) objective. Taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence.
|
113 |
+
|
114 |
+
This way, the model learns an inner representation of 100 languages that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the XLM-RoBERTa-XL model as inputs.
|
115 |
+
|
116 |
+
## Intended uses & limitations
|
117 |
+
|
118 |
+
You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?search=xlm-roberta-xl) to look for fine-tuned versions on a task that interests you.
|
119 |
+
|
120 |
+
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation, you should look at models like GPT2.
|
121 |
+
|
122 |
+
## Usage
|
123 |
+
|
124 |
+
You can use this model directly with a pipeline for masked language modeling:
|
125 |
+
|
126 |
+
```python
|
127 |
+
>>> from transformers import pipeline
|
128 |
+
>>> unmasker = pipeline('fill-mask', model='facebook/xlm-roberta-xl')
|
129 |
+
>>> unmasker("Europe is a <mask> continent.")
|
130 |
+
|
131 |
+
[{'score': 0.08562745153903961,
|
132 |
+
'token': 38043,
|
133 |
+
'token_str': 'living',
|
134 |
+
'sequence': 'Europe is a living continent.'},
|
135 |
+
{'score': 0.0799778401851654,
|
136 |
+
'token': 103494,
|
137 |
+
'token_str': 'dead',
|
138 |
+
'sequence': 'Europe is a dead continent.'},
|
139 |
+
{'score': 0.046154674142599106,
|
140 |
+
'token': 72856,
|
141 |
+
'token_str': 'lost',
|
142 |
+
'sequence': 'Europe is a lost continent.'},
|
143 |
+
{'score': 0.04358183592557907,
|
144 |
+
'token': 19336,
|
145 |
+
'token_str': 'small',
|
146 |
+
'sequence': 'Europe is a small continent.'},
|
147 |
+
{'score': 0.040570393204689026,
|
148 |
+
'token': 34923,
|
149 |
+
'token_str': 'beautiful',
|
150 |
+
'sequence': 'Europe is a beautiful continent.'}]
|
151 |
+
```
|
152 |
+
|
153 |
+
Here is how to use this model to get the features of a given text in PyTorch:
|
154 |
+
|
155 |
+
```python
|
156 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
157 |
+
|
158 |
+
tokenizer = AutoTokenizer.from_pretrained('facebook/xlm-roberta-xl')
|
159 |
+
model = AutoModelForMaskedLM.from_pretrained("facebook/xlm-roberta-xl")
|
160 |
+
|
161 |
+
# prepare input
|
162 |
+
text = "Replace me by any text you'd like."
|
163 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
164 |
+
|
165 |
+
# forward pass
|
166 |
+
output = model(**encoded_input)
|
167 |
+
```
|
168 |
+
|
169 |
+
### BibTeX entry and citation info
|
170 |
+
|
171 |
+
```bibtex
|
172 |
+
@article{DBLP:journals/corr/abs-2105-00572,
|
173 |
+
author = {Naman Goyal and
|
174 |
+
Jingfei Du and
|
175 |
+
Myle Ott and
|
176 |
+
Giri Anantharaman and
|
177 |
+
Alexis Conneau},
|
178 |
+
title = {Larger-Scale Transformers for Multilingual Masked Language Modeling},
|
179 |
+
journal = {CoRR},
|
180 |
+
volume = {abs/2105.00572},
|
181 |
+
year = {2021},
|
182 |
+
url = {https://arxiv.org/abs/2105.00572},
|
183 |
+
eprinttype = {arXiv},
|
184 |
+
eprint = {2105.00572},
|
185 |
+
timestamp = {Wed, 12 May 2021 15:54:31 +0200},
|
186 |
+
biburl = {https://dblp.org/rec/journals/corr/abs-2105-00572.bib},
|
187 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
188 |
+
}
|
189 |
+
```
|
config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"XLMRobertaXLForMaskedLM"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 2560,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 10240,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "xlm-roberta-xl",
|
17 |
+
"num_attention_heads": 32,
|
18 |
+
"num_hidden_layers": 36,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"type_vocab_size": 1,
|
23 |
+
"use_cache": true,
|
24 |
+
"vocab_size": 250880,
|
25 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
26 |
+
"layer_transformation": "softmax",
|
27 |
+
"layer_norm": true,
|
28 |
+
"dropout": 0.1,
|
29 |
+
"estimator_sizes": [2560, 1280]
|
30 |
+
}
|
configuration_xlm_roberta_xl.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" XLM_ROBERTa_XL configuration"""
|
16 |
+
|
17 |
+
from collections import OrderedDict
|
18 |
+
from typing import Mapping
|
19 |
+
|
20 |
+
from transformers.configuration_utils import PretrainedConfig
|
21 |
+
from transformers.onnx import OnnxConfig
|
22 |
+
from transformers.utils import logging
|
23 |
+
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
|
28 |
+
#from ..deprecated._archive_maps import XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
29 |
+
|
30 |
+
|
31 |
+
class XLMRobertaXLConfig(PretrainedConfig):
|
32 |
+
r"""
|
33 |
+
This is the configuration class to store the configuration of a [`XLMRobertaXLModel`] or a [`TFXLMRobertaXLModel`].
|
34 |
+
It is used to instantiate a XLM_ROBERTA_XL model according to the specified arguments, defining the model
|
35 |
+
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the
|
36 |
+
XLM_ROBERTA_XL [facebook/xlm-roberta-xl](https://huggingface.co/facebook/xlm-roberta-xl) architecture.
|
37 |
+
|
38 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
39 |
+
documentation from [`PretrainedConfig`] for more information.
|
40 |
+
|
41 |
+
|
42 |
+
Args:
|
43 |
+
vocab_size (`int`, *optional*, defaults to 250880):
|
44 |
+
Vocabulary size of the XLM_ROBERTA_XL model. Defines the number of different tokens that can be represented
|
45 |
+
by the `inputs_ids` passed when calling [`XLMRobertaXLModel`].
|
46 |
+
hidden_size (`int`, *optional*, defaults to 2560):
|
47 |
+
Dimensionality of the encoder layers and the pooler layer.
|
48 |
+
num_hidden_layers (`int`, *optional*, defaults to 36):
|
49 |
+
Number of hidden layers in the Transformer encoder.
|
50 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
51 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
52 |
+
intermediate_size (`int`, *optional*, defaults to 10240):
|
53 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
54 |
+
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
55 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
56 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
57 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
58 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
59 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
60 |
+
The dropout ratio for the attention probabilities.
|
61 |
+
max_position_embeddings (`int`, *optional*, defaults to 514):
|
62 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
63 |
+
just in case (e.g., 512 or 1024 or 2048).
|
64 |
+
type_vocab_size (`int`, *optional*, defaults to 1):
|
65 |
+
The vocabulary size of the `token_type_ids` passed when calling [`XLMRobertaXLModel`] or
|
66 |
+
[`TFXLMRobertaXLModel`].
|
67 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
68 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
69 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
|
70 |
+
The epsilon used by the layer normalization layers.
|
71 |
+
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
|
72 |
+
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
|
73 |
+
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
|
74 |
+
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
|
75 |
+
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
|
76 |
+
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
|
77 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
78 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
79 |
+
relevant if `config.is_decoder=True`.
|
80 |
+
classifier_dropout (`float`, *optional*):
|
81 |
+
The dropout ratio for the classification head.
|
82 |
+
|
83 |
+
Examples:
|
84 |
+
|
85 |
+
```python
|
86 |
+
>>> from transformers import XLMRobertaXLConfig, XLMRobertaXLModel
|
87 |
+
|
88 |
+
>>> # Initializing a XLM_ROBERTA_XL google-bert/bert-base-uncased style configuration
|
89 |
+
>>> configuration = XLMRobertaXLConfig()
|
90 |
+
|
91 |
+
>>> # Initializing a model (with random weights) from the google-bert/bert-base-uncased style configuration
|
92 |
+
>>> model = XLMRobertaXLModel(configuration)
|
93 |
+
|
94 |
+
>>> # Accessing the model configuration
|
95 |
+
>>> configuration = model.config
|
96 |
+
```"""
|
97 |
+
|
98 |
+
model_type = "xlm-roberta-xl"
|
99 |
+
|
100 |
+
def __init__(
|
101 |
+
self,
|
102 |
+
vocab_size=250880,
|
103 |
+
hidden_size=2560,
|
104 |
+
num_hidden_layers=36,
|
105 |
+
num_attention_heads=32,
|
106 |
+
intermediate_size=10240,
|
107 |
+
hidden_act="gelu",
|
108 |
+
hidden_dropout_prob=0.1,
|
109 |
+
attention_probs_dropout_prob=0.1,
|
110 |
+
max_position_embeddings=514,
|
111 |
+
type_vocab_size=1,
|
112 |
+
initializer_range=0.02,
|
113 |
+
layer_norm_eps=1e-05,
|
114 |
+
pad_token_id=1,
|
115 |
+
bos_token_id=0,
|
116 |
+
eos_token_id=2,
|
117 |
+
position_embedding_type="absolute",
|
118 |
+
use_cache=True,
|
119 |
+
classifier_dropout=None,
|
120 |
+
**kwargs,
|
121 |
+
):
|
122 |
+
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
123 |
+
self.vocab_size = vocab_size
|
124 |
+
self.hidden_size = hidden_size
|
125 |
+
self.num_hidden_layers = num_hidden_layers
|
126 |
+
self.num_attention_heads = num_attention_heads
|
127 |
+
self.hidden_act = hidden_act
|
128 |
+
self.intermediate_size = intermediate_size
|
129 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
130 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
131 |
+
self.max_position_embeddings = max_position_embeddings
|
132 |
+
self.type_vocab_size = type_vocab_size
|
133 |
+
self.initializer_range = initializer_range
|
134 |
+
self.layer_norm_eps = layer_norm_eps
|
135 |
+
self.position_embedding_type = position_embedding_type
|
136 |
+
self.use_cache = use_cache
|
137 |
+
self.classifier_dropout = classifier_dropout
|
138 |
+
|
139 |
+
|
140 |
+
# Copied from transformers.models.roberta.configuration_roberta.RobertaOnnxConfig with Roberta->XLMRobertaXL
|
141 |
+
class XLMRobertaXLOnnxConfig(OnnxConfig):
|
142 |
+
@property
|
143 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
144 |
+
if self.task == "multiple-choice":
|
145 |
+
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
|
146 |
+
else:
|
147 |
+
dynamic_axis = {0: "batch", 1: "sequence"}
|
148 |
+
return OrderedDict(
|
149 |
+
[
|
150 |
+
("input_ids", dynamic_axis),
|
151 |
+
("attention_mask", dynamic_axis),
|
152 |
+
]
|
153 |
+
)
|
154 |
+
|
modeling_xlm_roberta_xl.py
ADDED
@@ -0,0 +1,1777 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""PyTorch XLM RoBERTa xl,xxl model."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
from typing import List, Optional, Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.utils.checkpoint
|
22 |
+
from torch import nn
|
23 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
24 |
+
from torch.nn import Parameter, ParameterList
|
25 |
+
|
26 |
+
from transformers.activations import ACT2FN, gelu
|
27 |
+
from transformers.modeling_outputs import (
|
28 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
29 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
30 |
+
CausalLMOutputWithCrossAttentions,
|
31 |
+
MaskedLMOutput,
|
32 |
+
MultipleChoiceModelOutput,
|
33 |
+
QuestionAnsweringModelOutput,
|
34 |
+
SequenceClassifierOutput,
|
35 |
+
TokenClassifierOutput,
|
36 |
+
)
|
37 |
+
from transformers import PreTrainedModel
|
38 |
+
from transformers.pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
39 |
+
from transformers.utils import (
|
40 |
+
add_code_sample_docstrings,
|
41 |
+
add_start_docstrings,
|
42 |
+
add_start_docstrings_to_model_forward,
|
43 |
+
logging,
|
44 |
+
replace_return_docstrings,
|
45 |
+
)
|
46 |
+
from .configuration_xlm_roberta_xl import XLMRobertaXLConfig
|
47 |
+
|
48 |
+
|
49 |
+
logger = logging.get_logger(__name__)
|
50 |
+
|
51 |
+
_CHECKPOINT_FOR_DOC = "facebook/xlm-roberta-xl"
|
52 |
+
_CONFIG_FOR_DOC = "XLMRobertaXLConfig"
|
53 |
+
|
54 |
+
|
55 |
+
#from ..deprecated._archive_maps import XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
56 |
+
|
57 |
+
|
58 |
+
class XLMRobertaXLEmbeddings(nn.Module):
|
59 |
+
"""
|
60 |
+
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
|
61 |
+
"""
|
62 |
+
|
63 |
+
def __init__(self, config):
|
64 |
+
super().__init__()
|
65 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
66 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
67 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
68 |
+
|
69 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
70 |
+
# any TensorFlow checkpoint file
|
71 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
72 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
73 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
74 |
+
self.register_buffer(
|
75 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
76 |
+
)
|
77 |
+
self.register_buffer(
|
78 |
+
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
|
79 |
+
)
|
80 |
+
|
81 |
+
# End copy
|
82 |
+
self.padding_idx = config.pad_token_id
|
83 |
+
self.position_embeddings = nn.Embedding(
|
84 |
+
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
|
85 |
+
)
|
86 |
+
|
87 |
+
def forward(
|
88 |
+
self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
|
89 |
+
):
|
90 |
+
if position_ids is None:
|
91 |
+
if input_ids is not None:
|
92 |
+
# Create the position ids from the input token ids. Any padded tokens remain padded.
|
93 |
+
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
|
94 |
+
else:
|
95 |
+
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
|
96 |
+
|
97 |
+
if input_ids is not None:
|
98 |
+
input_shape = input_ids.size()
|
99 |
+
else:
|
100 |
+
input_shape = inputs_embeds.size()[:-1]
|
101 |
+
|
102 |
+
seq_length = input_shape[1]
|
103 |
+
|
104 |
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
105 |
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
106 |
+
# issue #5664
|
107 |
+
if token_type_ids is None:
|
108 |
+
if hasattr(self, "token_type_ids"):
|
109 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
110 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
|
111 |
+
token_type_ids = buffered_token_type_ids_expanded
|
112 |
+
else:
|
113 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
114 |
+
|
115 |
+
if inputs_embeds is None:
|
116 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
117 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
118 |
+
|
119 |
+
embeddings = inputs_embeds + token_type_embeddings
|
120 |
+
if self.position_embedding_type == "absolute":
|
121 |
+
position_embeddings = self.position_embeddings(position_ids)
|
122 |
+
embeddings += position_embeddings
|
123 |
+
|
124 |
+
embeddings = self.dropout(embeddings)
|
125 |
+
return embeddings
|
126 |
+
|
127 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings.create_position_ids_from_inputs_embeds
|
128 |
+
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
|
129 |
+
"""
|
130 |
+
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
|
131 |
+
|
132 |
+
Args:
|
133 |
+
inputs_embeds: torch.Tensor
|
134 |
+
|
135 |
+
Returns: torch.Tensor
|
136 |
+
"""
|
137 |
+
input_shape = inputs_embeds.size()[:-1]
|
138 |
+
sequence_length = input_shape[1]
|
139 |
+
|
140 |
+
position_ids = torch.arange(
|
141 |
+
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
|
142 |
+
)
|
143 |
+
return position_ids.unsqueeze(0).expand(input_shape)
|
144 |
+
|
145 |
+
|
146 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->XLMRobertaXL
|
147 |
+
class XLMRobertaXLSelfAttention(nn.Module):
|
148 |
+
def __init__(self, config, position_embedding_type=None):
|
149 |
+
super().__init__()
|
150 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
151 |
+
raise ValueError(
|
152 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
153 |
+
f"heads ({config.num_attention_heads})"
|
154 |
+
)
|
155 |
+
|
156 |
+
self.num_attention_heads = config.num_attention_heads
|
157 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
158 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
159 |
+
|
160 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
161 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
162 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
163 |
+
|
164 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
165 |
+
self.position_embedding_type = position_embedding_type or getattr(
|
166 |
+
config, "position_embedding_type", "absolute"
|
167 |
+
)
|
168 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
169 |
+
self.max_position_embeddings = config.max_position_embeddings
|
170 |
+
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
171 |
+
|
172 |
+
self.is_decoder = config.is_decoder
|
173 |
+
|
174 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
175 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
176 |
+
x = x.view(new_x_shape)
|
177 |
+
return x.permute(0, 2, 1, 3)
|
178 |
+
|
179 |
+
def forward(
|
180 |
+
self,
|
181 |
+
hidden_states: torch.Tensor,
|
182 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
183 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
184 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
185 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
186 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
187 |
+
output_attentions: Optional[bool] = False,
|
188 |
+
) -> Tuple[torch.Tensor]:
|
189 |
+
mixed_query_layer = self.query(hidden_states)
|
190 |
+
|
191 |
+
# If this is instantiated as a cross-attention module, the keys
|
192 |
+
# and values come from an encoder; the attention mask needs to be
|
193 |
+
# such that the encoder's padding tokens are not attended to.
|
194 |
+
is_cross_attention = encoder_hidden_states is not None
|
195 |
+
|
196 |
+
if is_cross_attention and past_key_value is not None:
|
197 |
+
# reuse k,v, cross_attentions
|
198 |
+
key_layer = past_key_value[0]
|
199 |
+
value_layer = past_key_value[1]
|
200 |
+
attention_mask = encoder_attention_mask
|
201 |
+
elif is_cross_attention:
|
202 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
203 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
204 |
+
attention_mask = encoder_attention_mask
|
205 |
+
elif past_key_value is not None:
|
206 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
207 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
208 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
209 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
210 |
+
else:
|
211 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
212 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
213 |
+
|
214 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
215 |
+
|
216 |
+
use_cache = past_key_value is not None
|
217 |
+
if self.is_decoder:
|
218 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
219 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
220 |
+
# key/value_states (first "if" case)
|
221 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
222 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
223 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
224 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
225 |
+
past_key_value = (key_layer, value_layer)
|
226 |
+
|
227 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
228 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
229 |
+
|
230 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
231 |
+
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
|
232 |
+
if use_cache:
|
233 |
+
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
|
234 |
+
-1, 1
|
235 |
+
)
|
236 |
+
else:
|
237 |
+
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
238 |
+
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
239 |
+
distance = position_ids_l - position_ids_r
|
240 |
+
|
241 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
242 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
243 |
+
|
244 |
+
if self.position_embedding_type == "relative_key":
|
245 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
246 |
+
attention_scores = attention_scores + relative_position_scores
|
247 |
+
elif self.position_embedding_type == "relative_key_query":
|
248 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
249 |
+
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
250 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
251 |
+
|
252 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
253 |
+
if attention_mask is not None:
|
254 |
+
# Apply the attention mask is (precomputed for all layers in XLMRobertaXLModel forward() function)
|
255 |
+
attention_scores = attention_scores + attention_mask
|
256 |
+
|
257 |
+
# Normalize the attention scores to probabilities.
|
258 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
259 |
+
|
260 |
+
# This is actually dropping out entire tokens to attend to, which might
|
261 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
262 |
+
attention_probs = self.dropout(attention_probs)
|
263 |
+
|
264 |
+
# Mask heads if we want to
|
265 |
+
if head_mask is not None:
|
266 |
+
attention_probs = attention_probs * head_mask
|
267 |
+
|
268 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
269 |
+
|
270 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
271 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
272 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
273 |
+
|
274 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
275 |
+
|
276 |
+
if self.is_decoder:
|
277 |
+
outputs = outputs + (past_key_value,)
|
278 |
+
return outputs
|
279 |
+
|
280 |
+
|
281 |
+
class XLMRobertaXLSelfOutput(nn.Module):
|
282 |
+
def __init__(self, config):
|
283 |
+
super().__init__()
|
284 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
285 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
286 |
+
|
287 |
+
def forward(self, hidden_states, input_tensor):
|
288 |
+
hidden_states = self.dense(hidden_states)
|
289 |
+
hidden_states = self.dropout(hidden_states)
|
290 |
+
hidden_states = hidden_states + input_tensor
|
291 |
+
return hidden_states
|
292 |
+
|
293 |
+
|
294 |
+
class XLMRobertaXLAttention(nn.Module):
|
295 |
+
def __init__(self, config, position_embedding_type=None):
|
296 |
+
super().__init__()
|
297 |
+
self.self_attn_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
298 |
+
self.self = XLMRobertaXLSelfAttention(config, position_embedding_type=position_embedding_type)
|
299 |
+
self.output = XLMRobertaXLSelfOutput(config)
|
300 |
+
self.pruned_heads = set()
|
301 |
+
|
302 |
+
def prune_heads(self, heads):
|
303 |
+
if len(heads) == 0:
|
304 |
+
return
|
305 |
+
heads, index = find_pruneable_heads_and_indices(
|
306 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
307 |
+
)
|
308 |
+
|
309 |
+
# Prune linear layers
|
310 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
311 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
312 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
313 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
314 |
+
|
315 |
+
# Update hyper params and store pruned heads
|
316 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
317 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
318 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
319 |
+
|
320 |
+
def forward(
|
321 |
+
self,
|
322 |
+
hidden_states,
|
323 |
+
attention_mask=None,
|
324 |
+
head_mask=None,
|
325 |
+
encoder_hidden_states=None,
|
326 |
+
encoder_attention_mask=None,
|
327 |
+
past_key_value=None,
|
328 |
+
output_attentions=False,
|
329 |
+
):
|
330 |
+
intermediate = self.self_attn_layer_norm(hidden_states)
|
331 |
+
self_outputs = self.self(
|
332 |
+
intermediate,
|
333 |
+
attention_mask,
|
334 |
+
head_mask,
|
335 |
+
encoder_hidden_states,
|
336 |
+
encoder_attention_mask,
|
337 |
+
past_key_value,
|
338 |
+
output_attentions,
|
339 |
+
)
|
340 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
341 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
342 |
+
return outputs
|
343 |
+
|
344 |
+
|
345 |
+
# Copied from transformers.models.bert.modeling_bert.BertIntermediate
|
346 |
+
class XLMRobertaXLIntermediate(nn.Module):
|
347 |
+
def __init__(self, config):
|
348 |
+
super().__init__()
|
349 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
350 |
+
if isinstance(config.hidden_act, str):
|
351 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
352 |
+
else:
|
353 |
+
self.intermediate_act_fn = config.hidden_act
|
354 |
+
|
355 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
356 |
+
hidden_states = self.dense(hidden_states)
|
357 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
358 |
+
return hidden_states
|
359 |
+
|
360 |
+
|
361 |
+
class XLMRobertaXLOutput(nn.Module):
|
362 |
+
def __init__(self, config):
|
363 |
+
super().__init__()
|
364 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
365 |
+
|
366 |
+
def forward(self, hidden_states, input_tensor):
|
367 |
+
hidden_states = self.dense(hidden_states)
|
368 |
+
hidden_states = hidden_states + input_tensor
|
369 |
+
return hidden_states
|
370 |
+
|
371 |
+
|
372 |
+
class XLMRobertaXLLayer(nn.Module):
|
373 |
+
def __init__(self, config):
|
374 |
+
super().__init__()
|
375 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
376 |
+
self.seq_len_dim = 1
|
377 |
+
self.attention = XLMRobertaXLAttention(config)
|
378 |
+
self.is_decoder = config.is_decoder
|
379 |
+
self.add_cross_attention = config.add_cross_attention
|
380 |
+
if self.add_cross_attention:
|
381 |
+
if not self.is_decoder:
|
382 |
+
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
|
383 |
+
self.crossattention = XLMRobertaXLAttention(config, position_embedding_type="absolute")
|
384 |
+
self.intermediate = XLMRobertaXLIntermediate(config)
|
385 |
+
self.output = XLMRobertaXLOutput(config)
|
386 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
387 |
+
|
388 |
+
def forward(
|
389 |
+
self,
|
390 |
+
hidden_states,
|
391 |
+
attention_mask=None,
|
392 |
+
head_mask=None,
|
393 |
+
encoder_hidden_states=None,
|
394 |
+
encoder_attention_mask=None,
|
395 |
+
past_key_value=None,
|
396 |
+
output_attentions=False,
|
397 |
+
):
|
398 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
399 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
400 |
+
self_attention_outputs = self.attention(
|
401 |
+
hidden_states,
|
402 |
+
attention_mask,
|
403 |
+
head_mask,
|
404 |
+
output_attentions=output_attentions,
|
405 |
+
past_key_value=self_attn_past_key_value,
|
406 |
+
)
|
407 |
+
attention_output = self_attention_outputs[0]
|
408 |
+
|
409 |
+
# if decoder, the last output is tuple of self-attn cache
|
410 |
+
if self.is_decoder:
|
411 |
+
outputs = self_attention_outputs[1:-1]
|
412 |
+
present_key_value = self_attention_outputs[-1]
|
413 |
+
else:
|
414 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
415 |
+
|
416 |
+
cross_attn_present_key_value = None
|
417 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
418 |
+
if not hasattr(self, "crossattention"):
|
419 |
+
raise ValueError(
|
420 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
|
421 |
+
" by setting `config.add_cross_attention=True`"
|
422 |
+
)
|
423 |
+
|
424 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
425 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
426 |
+
cross_attention_outputs = self.crossattention(
|
427 |
+
attention_output,
|
428 |
+
attention_mask,
|
429 |
+
head_mask,
|
430 |
+
encoder_hidden_states,
|
431 |
+
encoder_attention_mask,
|
432 |
+
cross_attn_past_key_value,
|
433 |
+
output_attentions,
|
434 |
+
)
|
435 |
+
attention_output = cross_attention_outputs[0]
|
436 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
437 |
+
|
438 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
439 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
440 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
441 |
+
|
442 |
+
layer_output = apply_chunking_to_forward(
|
443 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
444 |
+
)
|
445 |
+
outputs = (layer_output,) + outputs
|
446 |
+
|
447 |
+
# if decoder, return the attn key/values as the last output
|
448 |
+
if self.is_decoder:
|
449 |
+
outputs = outputs + (present_key_value,)
|
450 |
+
|
451 |
+
return outputs
|
452 |
+
|
453 |
+
def feed_forward_chunk(self, attention_output):
|
454 |
+
intermediate_output = self.LayerNorm(attention_output)
|
455 |
+
intermediate_output = self.intermediate(intermediate_output)
|
456 |
+
layer_output = self.output(intermediate_output, attention_output)
|
457 |
+
return layer_output
|
458 |
+
|
459 |
+
|
460 |
+
class XLMRobertaXLEncoder(nn.Module):
|
461 |
+
def __init__(self, config):
|
462 |
+
super().__init__()
|
463 |
+
self.config = config
|
464 |
+
self.layer = nn.ModuleList([XLMRobertaXLLayer(config) for _ in range(config.num_hidden_layers)])
|
465 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
466 |
+
self.gradient_checkpointing = False
|
467 |
+
|
468 |
+
def forward(
|
469 |
+
self,
|
470 |
+
hidden_states,
|
471 |
+
attention_mask=None,
|
472 |
+
head_mask=None,
|
473 |
+
encoder_hidden_states=None,
|
474 |
+
encoder_attention_mask=None,
|
475 |
+
past_key_values=None,
|
476 |
+
use_cache=None,
|
477 |
+
output_attentions=False,
|
478 |
+
output_hidden_states=False,
|
479 |
+
return_dict=True,
|
480 |
+
):
|
481 |
+
if self.gradient_checkpointing and self.training:
|
482 |
+
if use_cache:
|
483 |
+
logger.warning_once(
|
484 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
485 |
+
)
|
486 |
+
use_cache = False
|
487 |
+
all_hidden_states = () if output_hidden_states else None
|
488 |
+
all_self_attentions = () if output_attentions else None
|
489 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
490 |
+
|
491 |
+
next_decoder_cache = () if use_cache else None
|
492 |
+
for i, layer_module in enumerate(self.layer):
|
493 |
+
if output_hidden_states:
|
494 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
495 |
+
|
496 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
497 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
498 |
+
|
499 |
+
if self.gradient_checkpointing and self.training:
|
500 |
+
layer_outputs = self._gradient_checkpointing_func(
|
501 |
+
layer_module.__call__,
|
502 |
+
hidden_states,
|
503 |
+
attention_mask,
|
504 |
+
layer_head_mask,
|
505 |
+
encoder_hidden_states,
|
506 |
+
encoder_attention_mask,
|
507 |
+
past_key_value,
|
508 |
+
output_attentions,
|
509 |
+
)
|
510 |
+
else:
|
511 |
+
layer_outputs = layer_module(
|
512 |
+
hidden_states,
|
513 |
+
attention_mask,
|
514 |
+
layer_head_mask,
|
515 |
+
encoder_hidden_states,
|
516 |
+
encoder_attention_mask,
|
517 |
+
past_key_value,
|
518 |
+
output_attentions,
|
519 |
+
)
|
520 |
+
|
521 |
+
hidden_states = layer_outputs[0]
|
522 |
+
if use_cache:
|
523 |
+
next_decoder_cache += (layer_outputs[-1],)
|
524 |
+
if output_attentions:
|
525 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
526 |
+
if self.config.add_cross_attention:
|
527 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
528 |
+
|
529 |
+
hidden_states = self.LayerNorm(hidden_states)
|
530 |
+
|
531 |
+
if output_hidden_states:
|
532 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
533 |
+
|
534 |
+
if not return_dict:
|
535 |
+
return tuple(
|
536 |
+
v
|
537 |
+
for v in [
|
538 |
+
hidden_states,
|
539 |
+
next_decoder_cache,
|
540 |
+
all_hidden_states,
|
541 |
+
all_self_attentions,
|
542 |
+
all_cross_attentions,
|
543 |
+
]
|
544 |
+
if v is not None
|
545 |
+
)
|
546 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
547 |
+
last_hidden_state=hidden_states,
|
548 |
+
past_key_values=next_decoder_cache,
|
549 |
+
hidden_states=all_hidden_states,
|
550 |
+
attentions=all_self_attentions,
|
551 |
+
cross_attentions=all_cross_attentions,
|
552 |
+
)
|
553 |
+
|
554 |
+
|
555 |
+
# Copied from transformers.models.bert.modeling_bert.BertPooler
|
556 |
+
class XLMRobertaXLPooler(nn.Module):
|
557 |
+
def __init__(self, config):
|
558 |
+
super().__init__()
|
559 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
560 |
+
self.activation = nn.Tanh()
|
561 |
+
|
562 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
563 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
564 |
+
# to the first token.
|
565 |
+
first_token_tensor = hidden_states[:, 0]
|
566 |
+
pooled_output = self.dense(first_token_tensor)
|
567 |
+
pooled_output = self.activation(pooled_output)
|
568 |
+
return pooled_output
|
569 |
+
|
570 |
+
|
571 |
+
class XLMRobertaXLPreTrainedModel(PreTrainedModel):
|
572 |
+
"""
|
573 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
574 |
+
models.
|
575 |
+
"""
|
576 |
+
|
577 |
+
config_class = XLMRobertaXLConfig
|
578 |
+
base_model_prefix = "roberta"
|
579 |
+
|
580 |
+
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
|
581 |
+
def _init_weights(self, module):
|
582 |
+
"""Initialize the weights"""
|
583 |
+
if isinstance(module, nn.Linear):
|
584 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
585 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
586 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
587 |
+
if module.bias is not None:
|
588 |
+
module.bias.data.zero_()
|
589 |
+
elif isinstance(module, nn.Embedding):
|
590 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
591 |
+
if module.padding_idx is not None:
|
592 |
+
module.weight.data[module.padding_idx].zero_()
|
593 |
+
elif isinstance(module, nn.LayerNorm):
|
594 |
+
module.bias.data.zero_()
|
595 |
+
module.weight.data.fill_(1.0)
|
596 |
+
|
597 |
+
|
598 |
+
XLM_ROBERTA_XL_START_DOCSTRING = r"""
|
599 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
600 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
601 |
+
etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module)
|
602 |
+
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
|
603 |
+
general usage and behavior.
|
604 |
+
|
605 |
+
Parameters:
|
606 |
+
config ([`XLMRobertaXLConfig`]): Model configuration class with all the parameters of the
|
607 |
+
model. Initializing with a config file does not load the weights associated with the model, only the
|
608 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
609 |
+
"""
|
610 |
+
|
611 |
+
XLM_ROBERTA_XL_INPUTS_DOCSTRING = r"""
|
612 |
+
Args:
|
613 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
614 |
+
Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See
|
615 |
+
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
|
616 |
+
IDs?](../glossary#input-ids)
|
617 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
618 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
619 |
+
|
620 |
+
- 1 for tokens that are **not masked**,
|
621 |
+
- 0 for tokens that are **masked**.
|
622 |
+
[What are attention masks?](../glossary#attention-mask)
|
623 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
624 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
625 |
+
1]`:
|
626 |
+
|
627 |
+
- 0 corresponds to a *sentence A* token,
|
628 |
+
- 1 corresponds to a *sentence B* token.
|
629 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
630 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
631 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
632 |
+
config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids)
|
633 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
634 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
635 |
+
|
636 |
+
- 1 indicates the head is **not masked**,
|
637 |
+
- 0 indicates the head is **masked**.
|
638 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
639 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
640 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
641 |
+
model's internal embedding lookup matrix.
|
642 |
+
output_attentions (`bool`, *optional*):
|
643 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
644 |
+
tensors for more detail.
|
645 |
+
output_hidden_states (`bool`, *optional*):
|
646 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
647 |
+
more detail.
|
648 |
+
return_dict (`bool`, *optional*):
|
649 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
650 |
+
"""
|
651 |
+
|
652 |
+
|
653 |
+
@add_start_docstrings(
|
654 |
+
"The bare XLM-RoBERTa-XL Model transformer outputting raw hidden-states without any specific head on top.",
|
655 |
+
XLM_ROBERTA_XL_START_DOCSTRING,
|
656 |
+
)
|
657 |
+
class XLMRobertaXLModel(XLMRobertaXLPreTrainedModel):
|
658 |
+
"""
|
659 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
660 |
+
cross-attention is added between the self-attention layers, following the architecture described in *Attention is
|
661 |
+
all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
|
662 |
+
Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the `is_decoder`
|
663 |
+
argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to initialized with
|
664 |
+
both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as
|
665 |
+
an input to the forward pass. .. _*Attention is all you need*: https://arxiv.org/abs/1706.03762
|
666 |
+
"""
|
667 |
+
|
668 |
+
# Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->XLMRobertaXL
|
669 |
+
def __init__(self, config, add_pooling_layer=True):
|
670 |
+
super().__init__(config)
|
671 |
+
self.config = config
|
672 |
+
|
673 |
+
self.embeddings = XLMRobertaXLEmbeddings(config)
|
674 |
+
self.encoder = XLMRobertaXLEncoder(config)
|
675 |
+
|
676 |
+
self.pooler = XLMRobertaXLPooler(config) if add_pooling_layer else None
|
677 |
+
|
678 |
+
# Initialize weights and apply final processing
|
679 |
+
self.post_init()
|
680 |
+
|
681 |
+
def get_input_embeddings(self):
|
682 |
+
return self.embeddings.word_embeddings
|
683 |
+
|
684 |
+
def set_input_embeddings(self, value):
|
685 |
+
self.embeddings.word_embeddings = value
|
686 |
+
|
687 |
+
def _prune_heads(self, heads_to_prune):
|
688 |
+
"""
|
689 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
690 |
+
class PreTrainedModel
|
691 |
+
"""
|
692 |
+
for layer, heads in heads_to_prune.items():
|
693 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
694 |
+
|
695 |
+
@add_start_docstrings_to_model_forward(XLM_ROBERTA_XL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
696 |
+
@add_code_sample_docstrings(
|
697 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
698 |
+
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
|
699 |
+
config_class=_CONFIG_FOR_DOC,
|
700 |
+
)
|
701 |
+
# Copied from transformers.models.bert.modeling_bert.BertModel.forward
|
702 |
+
def forward(
|
703 |
+
self,
|
704 |
+
input_ids: Optional[torch.Tensor] = None,
|
705 |
+
attention_mask: Optional[torch.Tensor] = None,
|
706 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
707 |
+
position_ids: Optional[torch.Tensor] = None,
|
708 |
+
head_mask: Optional[torch.Tensor] = None,
|
709 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
710 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
711 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
712 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
713 |
+
use_cache: Optional[bool] = None,
|
714 |
+
output_attentions: Optional[bool] = None,
|
715 |
+
output_hidden_states: Optional[bool] = None,
|
716 |
+
return_dict: Optional[bool] = None,
|
717 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
718 |
+
r"""
|
719 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
720 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
721 |
+
the model is configured as a decoder.
|
722 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
723 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
724 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
725 |
+
|
726 |
+
- 1 for tokens that are **not masked**,
|
727 |
+
- 0 for tokens that are **masked**.
|
728 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
729 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
730 |
+
|
731 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
732 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
733 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
734 |
+
use_cache (`bool`, *optional*):
|
735 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
736 |
+
`past_key_values`).
|
737 |
+
"""
|
738 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
739 |
+
output_hidden_states = (
|
740 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
741 |
+
)
|
742 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
743 |
+
|
744 |
+
if self.config.is_decoder:
|
745 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
746 |
+
else:
|
747 |
+
use_cache = False
|
748 |
+
|
749 |
+
if input_ids is not None and inputs_embeds is not None:
|
750 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
751 |
+
elif input_ids is not None:
|
752 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
753 |
+
input_shape = input_ids.size()
|
754 |
+
elif inputs_embeds is not None:
|
755 |
+
input_shape = inputs_embeds.size()[:-1]
|
756 |
+
else:
|
757 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
758 |
+
|
759 |
+
batch_size, seq_length = input_shape
|
760 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
761 |
+
|
762 |
+
# past_key_values_length
|
763 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
764 |
+
|
765 |
+
if attention_mask is None:
|
766 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
767 |
+
|
768 |
+
if token_type_ids is None:
|
769 |
+
if hasattr(self.embeddings, "token_type_ids"):
|
770 |
+
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
771 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
772 |
+
token_type_ids = buffered_token_type_ids_expanded
|
773 |
+
else:
|
774 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
775 |
+
|
776 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
777 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
778 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
|
779 |
+
|
780 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
781 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
782 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
783 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
784 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
785 |
+
if encoder_attention_mask is None:
|
786 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
787 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
788 |
+
else:
|
789 |
+
encoder_extended_attention_mask = None
|
790 |
+
|
791 |
+
# Prepare head mask if needed
|
792 |
+
# 1.0 in head_mask indicate we keep the head
|
793 |
+
# attention_probs has shape bsz x n_heads x N x N
|
794 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
795 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
796 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
797 |
+
|
798 |
+
embedding_output = self.embeddings(
|
799 |
+
input_ids=input_ids,
|
800 |
+
position_ids=position_ids,
|
801 |
+
token_type_ids=token_type_ids,
|
802 |
+
inputs_embeds=inputs_embeds,
|
803 |
+
past_key_values_length=past_key_values_length,
|
804 |
+
)
|
805 |
+
encoder_outputs = self.encoder(
|
806 |
+
embedding_output,
|
807 |
+
attention_mask=extended_attention_mask,
|
808 |
+
head_mask=head_mask,
|
809 |
+
encoder_hidden_states=encoder_hidden_states,
|
810 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
811 |
+
past_key_values=past_key_values,
|
812 |
+
use_cache=use_cache,
|
813 |
+
output_attentions=output_attentions,
|
814 |
+
output_hidden_states=output_hidden_states,
|
815 |
+
return_dict=return_dict,
|
816 |
+
)
|
817 |
+
sequence_output = encoder_outputs[0]
|
818 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
819 |
+
|
820 |
+
if not return_dict:
|
821 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
822 |
+
|
823 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
824 |
+
last_hidden_state=sequence_output,
|
825 |
+
pooler_output=pooled_output,
|
826 |
+
past_key_values=encoder_outputs.past_key_values,
|
827 |
+
hidden_states=encoder_outputs.hidden_states,
|
828 |
+
attentions=encoder_outputs.attentions,
|
829 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
830 |
+
)
|
831 |
+
|
832 |
+
|
833 |
+
@add_start_docstrings(
|
834 |
+
"""XLM-RoBERTa-XL Model with a `language modeling` head on top for CLM fine-tuning.""",
|
835 |
+
XLM_ROBERTA_XL_START_DOCSTRING,
|
836 |
+
)
|
837 |
+
class XLMRobertaXLForCausalLM(XLMRobertaXLPreTrainedModel):
|
838 |
+
_tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
|
839 |
+
|
840 |
+
def __init__(self, config):
|
841 |
+
super().__init__(config)
|
842 |
+
|
843 |
+
if not config.is_decoder:
|
844 |
+
logger.warning("If you want to use `RobertaLMHeadModel` as a standalone, add `is_decoder=True.`")
|
845 |
+
|
846 |
+
self.roberta = XLMRobertaXLModel(config, add_pooling_layer=False)
|
847 |
+
self.lm_head = XLMRobertaXLLMHead(config)
|
848 |
+
|
849 |
+
self.init_weights()
|
850 |
+
|
851 |
+
def get_output_embeddings(self):
|
852 |
+
return self.lm_head.decoder
|
853 |
+
|
854 |
+
def set_output_embeddings(self, new_embeddings):
|
855 |
+
self.lm_head.decoder = new_embeddings
|
856 |
+
|
857 |
+
@add_start_docstrings_to_model_forward(XLM_ROBERTA_XL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
858 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
|
859 |
+
def forward(
|
860 |
+
self,
|
861 |
+
input_ids: Optional[torch.LongTensor] = None,
|
862 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
863 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
864 |
+
position_ids: Optional[torch.LongTensor] = None,
|
865 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
866 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
867 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
868 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
869 |
+
labels: Optional[torch.LongTensor] = None,
|
870 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
871 |
+
use_cache: Optional[bool] = None,
|
872 |
+
output_attentions: Optional[bool] = None,
|
873 |
+
output_hidden_states: Optional[bool] = None,
|
874 |
+
return_dict: Optional[bool] = None,
|
875 |
+
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
|
876 |
+
r"""
|
877 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
878 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
879 |
+
the model is configured as a decoder.
|
880 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
881 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
882 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
883 |
+
|
884 |
+
- 1 for tokens that are **not masked**,
|
885 |
+
- 0 for tokens that are **masked**.
|
886 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
887 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
888 |
+
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
|
889 |
+
ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
890 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
891 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
892 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
893 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
894 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
895 |
+
use_cache (`bool`, *optional*):
|
896 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
897 |
+
`past_key_values`).
|
898 |
+
|
899 |
+
Returns:
|
900 |
+
|
901 |
+
Example:
|
902 |
+
|
903 |
+
```python
|
904 |
+
>>> from transformers import AutoTokenizer, RobertaForCausalLM, RobertaConfig
|
905 |
+
>>> import torch
|
906 |
+
|
907 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-base")
|
908 |
+
>>> config = RobertaConfig.from_pretrained("FacebookAI/roberta-base")
|
909 |
+
>>> config.is_decoder = True
|
910 |
+
>>> model = RobertaForCausalLM.from_pretrained("FacebookAI/roberta-base", config=config)
|
911 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
912 |
+
>>> outputs = model(**inputs)
|
913 |
+
>>> prediction_logits = outputs.logits
|
914 |
+
```
|
915 |
+
"""
|
916 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
917 |
+
if labels is not None:
|
918 |
+
use_cache = False
|
919 |
+
|
920 |
+
outputs = self.roberta(
|
921 |
+
input_ids,
|
922 |
+
attention_mask=attention_mask,
|
923 |
+
token_type_ids=token_type_ids,
|
924 |
+
position_ids=position_ids,
|
925 |
+
head_mask=head_mask,
|
926 |
+
inputs_embeds=inputs_embeds,
|
927 |
+
encoder_hidden_states=encoder_hidden_states,
|
928 |
+
encoder_attention_mask=encoder_attention_mask,
|
929 |
+
past_key_values=past_key_values,
|
930 |
+
use_cache=use_cache,
|
931 |
+
output_attentions=output_attentions,
|
932 |
+
output_hidden_states=output_hidden_states,
|
933 |
+
return_dict=return_dict,
|
934 |
+
)
|
935 |
+
|
936 |
+
sequence_output = outputs[0]
|
937 |
+
prediction_scores = self.lm_head(sequence_output)
|
938 |
+
|
939 |
+
lm_loss = None
|
940 |
+
if labels is not None:
|
941 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
942 |
+
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
|
943 |
+
labels = labels[:, 1:].contiguous()
|
944 |
+
loss_fct = CrossEntropyLoss()
|
945 |
+
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
946 |
+
|
947 |
+
if not return_dict:
|
948 |
+
output = (prediction_scores,) + outputs[2:]
|
949 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
950 |
+
|
951 |
+
return CausalLMOutputWithCrossAttentions(
|
952 |
+
loss=lm_loss,
|
953 |
+
logits=prediction_scores,
|
954 |
+
past_key_values=outputs.past_key_values,
|
955 |
+
hidden_states=outputs.hidden_states,
|
956 |
+
attentions=outputs.attentions,
|
957 |
+
cross_attentions=outputs.cross_attentions,
|
958 |
+
)
|
959 |
+
|
960 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
|
961 |
+
input_shape = input_ids.shape
|
962 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
963 |
+
if attention_mask is None:
|
964 |
+
attention_mask = input_ids.new_ones(input_shape)
|
965 |
+
|
966 |
+
# cut decoder_input_ids if past_key_values is used
|
967 |
+
if past_key_values is not None:
|
968 |
+
past_length = past_key_values[0][0].shape[2]
|
969 |
+
|
970 |
+
# Some generation methods already pass only the last input ID
|
971 |
+
if input_ids.shape[1] > past_length:
|
972 |
+
remove_prefix_length = past_length
|
973 |
+
else:
|
974 |
+
# Default to old behavior: keep only final ID
|
975 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
976 |
+
|
977 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
978 |
+
|
979 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values}
|
980 |
+
|
981 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
982 |
+
reordered_past = ()
|
983 |
+
for layer_past in past_key_values:
|
984 |
+
reordered_past += (
|
985 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
986 |
+
)
|
987 |
+
return reordered_past
|
988 |
+
|
989 |
+
|
990 |
+
@add_start_docstrings(
|
991 |
+
"""XLM-RoBERTa-XL Model with a `language modeling` head on top.""", XLM_ROBERTA_XL_START_DOCSTRING
|
992 |
+
)
|
993 |
+
class XLMRobertaXLForMaskedLM(XLMRobertaXLPreTrainedModel):
|
994 |
+
_tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
|
995 |
+
|
996 |
+
def __init__(self, config):
|
997 |
+
super().__init__(config)
|
998 |
+
|
999 |
+
if config.is_decoder:
|
1000 |
+
logger.warning(
|
1001 |
+
"If you want to use `RobertaForMaskedLM` make sure `config.is_decoder=False` for "
|
1002 |
+
"bi-directional self-attention."
|
1003 |
+
)
|
1004 |
+
|
1005 |
+
self.roberta = XLMRobertaXLModel(config, add_pooling_layer=False)
|
1006 |
+
self.lm_head = XLMRobertaXLLMHead(config)
|
1007 |
+
|
1008 |
+
self.init_weights()
|
1009 |
+
|
1010 |
+
def get_output_embeddings(self):
|
1011 |
+
return self.lm_head.decoder
|
1012 |
+
|
1013 |
+
def set_output_embeddings(self, new_embeddings):
|
1014 |
+
self.lm_head.decoder = new_embeddings
|
1015 |
+
|
1016 |
+
@add_start_docstrings_to_model_forward(XLM_ROBERTA_XL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1017 |
+
@add_code_sample_docstrings(
|
1018 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1019 |
+
output_type=MaskedLMOutput,
|
1020 |
+
config_class=_CONFIG_FOR_DOC,
|
1021 |
+
mask="<mask>",
|
1022 |
+
)
|
1023 |
+
def forward(
|
1024 |
+
self,
|
1025 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1026 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1027 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1028 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1029 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1030 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1031 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
1032 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
1033 |
+
labels: Optional[torch.LongTensor] = None,
|
1034 |
+
output_attentions: Optional[bool] = None,
|
1035 |
+
output_hidden_states: Optional[bool] = None,
|
1036 |
+
return_dict: Optional[bool] = None,
|
1037 |
+
) -> Union[Tuple, MaskedLMOutput]:
|
1038 |
+
r"""
|
1039 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1040 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1041 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
1042 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1043 |
+
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
|
1044 |
+
Used to hide legacy arguments that have been deprecated.
|
1045 |
+
"""
|
1046 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1047 |
+
|
1048 |
+
outputs = self.roberta(
|
1049 |
+
input_ids,
|
1050 |
+
attention_mask=attention_mask,
|
1051 |
+
token_type_ids=token_type_ids,
|
1052 |
+
position_ids=position_ids,
|
1053 |
+
head_mask=head_mask,
|
1054 |
+
inputs_embeds=inputs_embeds,
|
1055 |
+
encoder_hidden_states=encoder_hidden_states,
|
1056 |
+
encoder_attention_mask=encoder_attention_mask,
|
1057 |
+
output_attentions=output_attentions,
|
1058 |
+
output_hidden_states=output_hidden_states,
|
1059 |
+
return_dict=return_dict,
|
1060 |
+
)
|
1061 |
+
sequence_output = outputs[0]
|
1062 |
+
prediction_scores = self.lm_head(sequence_output)
|
1063 |
+
|
1064 |
+
masked_lm_loss = None
|
1065 |
+
if labels is not None:
|
1066 |
+
loss_fct = CrossEntropyLoss()
|
1067 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1068 |
+
|
1069 |
+
if not return_dict:
|
1070 |
+
output = (prediction_scores,) + outputs[2:]
|
1071 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1072 |
+
|
1073 |
+
return MaskedLMOutput(
|
1074 |
+
loss=masked_lm_loss,
|
1075 |
+
logits=prediction_scores,
|
1076 |
+
hidden_states=outputs.hidden_states,
|
1077 |
+
attentions=outputs.attentions,
|
1078 |
+
)
|
1079 |
+
|
1080 |
+
|
1081 |
+
class XLMRobertaXLLMHead(nn.Module):
|
1082 |
+
"""XLM-RoBERTa-XL Head for masked language modeling."""
|
1083 |
+
|
1084 |
+
def __init__(self, config):
|
1085 |
+
super().__init__()
|
1086 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
1087 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
1088 |
+
|
1089 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
|
1090 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
1091 |
+
self.decoder.bias = self.bias
|
1092 |
+
|
1093 |
+
def forward(self, features, **kwargs):
|
1094 |
+
x = self.dense(features)
|
1095 |
+
x = gelu(x)
|
1096 |
+
x = self.layer_norm(x)
|
1097 |
+
|
1098 |
+
# project back to size of vocabulary with bias
|
1099 |
+
x = self.decoder(x)
|
1100 |
+
|
1101 |
+
return x
|
1102 |
+
|
1103 |
+
def _tie_weights(self):
|
1104 |
+
# To tie those two weights if they get disconnected (on TPU or when the bias is resized)
|
1105 |
+
self.bias = self.decoder.bias
|
1106 |
+
|
1107 |
+
|
1108 |
+
@add_start_docstrings(
|
1109 |
+
"""
|
1110 |
+
XLM-RoBERTa-XL Model transformer with a sequence classification/regression head on top (a linear layer on top
|
1111 |
+
of the pooled output) e.g. for GLUE tasks.
|
1112 |
+
""",
|
1113 |
+
XLM_ROBERTA_XL_START_DOCSTRING,
|
1114 |
+
)
|
1115 |
+
class XLMRobertaXLForSequenceClassification(XLMRobertaXLPreTrainedModel):
|
1116 |
+
def __init__(self, config):
|
1117 |
+
super().__init__(config)
|
1118 |
+
self.num_labels = config.num_labels
|
1119 |
+
self.config = config
|
1120 |
+
|
1121 |
+
self.roberta = XLMRobertaXLModel(config, add_pooling_layer=False)
|
1122 |
+
self.classifier = XLMRobertaXLClassificationHead(config)
|
1123 |
+
|
1124 |
+
self.init_weights()
|
1125 |
+
|
1126 |
+
@add_start_docstrings_to_model_forward(XLM_ROBERTA_XL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1127 |
+
@add_code_sample_docstrings(
|
1128 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1129 |
+
output_type=SequenceClassifierOutput,
|
1130 |
+
config_class=_CONFIG_FOR_DOC,
|
1131 |
+
)
|
1132 |
+
def forward(
|
1133 |
+
self,
|
1134 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1135 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1136 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1137 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1138 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1139 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1140 |
+
labels: Optional[torch.LongTensor] = None,
|
1141 |
+
output_attentions: Optional[bool] = None,
|
1142 |
+
output_hidden_states: Optional[bool] = None,
|
1143 |
+
return_dict: Optional[bool] = None,
|
1144 |
+
) -> Union[Tuple, SequenceClassifierOutput]:
|
1145 |
+
r"""
|
1146 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1147 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1148 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1149 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1150 |
+
"""
|
1151 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1152 |
+
|
1153 |
+
outputs = self.roberta(
|
1154 |
+
input_ids,
|
1155 |
+
attention_mask=attention_mask,
|
1156 |
+
token_type_ids=token_type_ids,
|
1157 |
+
position_ids=position_ids,
|
1158 |
+
head_mask=head_mask,
|
1159 |
+
inputs_embeds=inputs_embeds,
|
1160 |
+
output_attentions=output_attentions,
|
1161 |
+
output_hidden_states=output_hidden_states,
|
1162 |
+
return_dict=return_dict,
|
1163 |
+
)
|
1164 |
+
sequence_output = outputs[0]
|
1165 |
+
logits = self.classifier(sequence_output)
|
1166 |
+
|
1167 |
+
loss = None
|
1168 |
+
if labels is not None:
|
1169 |
+
if self.config.problem_type is None:
|
1170 |
+
if self.num_labels == 1:
|
1171 |
+
self.config.problem_type = "regression"
|
1172 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1173 |
+
self.config.problem_type = "single_label_classification"
|
1174 |
+
else:
|
1175 |
+
self.config.problem_type = "multi_label_classification"
|
1176 |
+
|
1177 |
+
if self.config.problem_type == "regression":
|
1178 |
+
loss_fct = MSELoss()
|
1179 |
+
if self.num_labels == 1:
|
1180 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1181 |
+
else:
|
1182 |
+
loss = loss_fct(logits, labels)
|
1183 |
+
elif self.config.problem_type == "single_label_classification":
|
1184 |
+
loss_fct = CrossEntropyLoss()
|
1185 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1186 |
+
elif self.config.problem_type == "multi_label_classification":
|
1187 |
+
loss_fct = BCEWithLogitsLoss()
|
1188 |
+
loss = loss_fct(logits, labels)
|
1189 |
+
|
1190 |
+
if not return_dict:
|
1191 |
+
output = (logits,) + outputs[2:]
|
1192 |
+
return ((loss,) + output) if loss is not None else output
|
1193 |
+
|
1194 |
+
return SequenceClassifierOutput(
|
1195 |
+
loss=loss,
|
1196 |
+
logits=logits,
|
1197 |
+
hidden_states=outputs.hidden_states,
|
1198 |
+
attentions=outputs.attentions,
|
1199 |
+
)
|
1200 |
+
|
1201 |
+
|
1202 |
+
@add_start_docstrings(
|
1203 |
+
"""
|
1204 |
+
XLM-RoBERTa-XL Model with a multiple choice classification head on top (a linear layer on top of the pooled
|
1205 |
+
output and a softmax) e.g. for RocStories/SWAG tasks.
|
1206 |
+
""",
|
1207 |
+
XLM_ROBERTA_XL_START_DOCSTRING,
|
1208 |
+
)
|
1209 |
+
class XLMRobertaXLForMultipleChoice(XLMRobertaXLPreTrainedModel):
|
1210 |
+
def __init__(self, config):
|
1211 |
+
super().__init__(config)
|
1212 |
+
|
1213 |
+
self.roberta = XLMRobertaXLModel(config)
|
1214 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1215 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
1216 |
+
|
1217 |
+
self.init_weights()
|
1218 |
+
|
1219 |
+
@add_start_docstrings_to_model_forward(
|
1220 |
+
XLM_ROBERTA_XL_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
|
1221 |
+
)
|
1222 |
+
@add_code_sample_docstrings(
|
1223 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1224 |
+
output_type=MultipleChoiceModelOutput,
|
1225 |
+
config_class=_CONFIG_FOR_DOC,
|
1226 |
+
)
|
1227 |
+
def forward(
|
1228 |
+
self,
|
1229 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1230 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1231 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1232 |
+
labels: Optional[torch.LongTensor] = None,
|
1233 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1234 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1235 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1236 |
+
output_attentions: Optional[bool] = None,
|
1237 |
+
output_hidden_states: Optional[bool] = None,
|
1238 |
+
return_dict: Optional[bool] = None,
|
1239 |
+
) -> Union[Tuple, MultipleChoiceModelOutput]:
|
1240 |
+
r"""
|
1241 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1242 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
1243 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
1244 |
+
`input_ids` above)
|
1245 |
+
"""
|
1246 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1247 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
1248 |
+
|
1249 |
+
flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
1250 |
+
flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
1251 |
+
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
1252 |
+
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
1253 |
+
flat_inputs_embeds = (
|
1254 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
1255 |
+
if inputs_embeds is not None
|
1256 |
+
else None
|
1257 |
+
)
|
1258 |
+
|
1259 |
+
outputs = self.roberta(
|
1260 |
+
flat_input_ids,
|
1261 |
+
position_ids=flat_position_ids,
|
1262 |
+
token_type_ids=flat_token_type_ids,
|
1263 |
+
attention_mask=flat_attention_mask,
|
1264 |
+
head_mask=head_mask,
|
1265 |
+
inputs_embeds=flat_inputs_embeds,
|
1266 |
+
output_attentions=output_attentions,
|
1267 |
+
output_hidden_states=output_hidden_states,
|
1268 |
+
return_dict=return_dict,
|
1269 |
+
)
|
1270 |
+
pooled_output = outputs[1]
|
1271 |
+
|
1272 |
+
pooled_output = self.dropout(pooled_output)
|
1273 |
+
logits = self.classifier(pooled_output)
|
1274 |
+
reshaped_logits = logits.view(-1, num_choices)
|
1275 |
+
|
1276 |
+
loss = None
|
1277 |
+
if labels is not None:
|
1278 |
+
loss_fct = CrossEntropyLoss()
|
1279 |
+
loss = loss_fct(reshaped_logits, labels)
|
1280 |
+
|
1281 |
+
if not return_dict:
|
1282 |
+
output = (reshaped_logits,) + outputs[2:]
|
1283 |
+
return ((loss,) + output) if loss is not None else output
|
1284 |
+
|
1285 |
+
return MultipleChoiceModelOutput(
|
1286 |
+
loss=loss,
|
1287 |
+
logits=reshaped_logits,
|
1288 |
+
hidden_states=outputs.hidden_states,
|
1289 |
+
attentions=outputs.attentions,
|
1290 |
+
)
|
1291 |
+
|
1292 |
+
|
1293 |
+
class LayerwiseAttention(torch.nn.Module):
|
1294 |
+
def __init__(
|
1295 |
+
self,
|
1296 |
+
num_hidden_layers: int,
|
1297 |
+
layer_norm: bool = False,
|
1298 |
+
layer_weights: Optional[List[int]] = None,
|
1299 |
+
dropout: float = None,
|
1300 |
+
layer_transformation: str = "softmax",
|
1301 |
+
) -> None:
|
1302 |
+
super(LayerwiseAttention, self).__init__()
|
1303 |
+
self.num_layers = num_hidden_layers + 1
|
1304 |
+
self.layer_norm = layer_norm
|
1305 |
+
self.dropout = dropout
|
1306 |
+
|
1307 |
+
self.transform_fn = torch.softmax
|
1308 |
+
if layer_transformation == "sparsemax":
|
1309 |
+
from entmax import sparsemax
|
1310 |
+
|
1311 |
+
self.transform_fn = sparsemax
|
1312 |
+
|
1313 |
+
if layer_weights is None:
|
1314 |
+
layer_weights = [0.0] * self.num_layers
|
1315 |
+
elif len(layer_weights) != self.num_layers:
|
1316 |
+
raise Exception(
|
1317 |
+
"Length of layer_weights {} differs \
|
1318 |
+
from num_layers {}".format(
|
1319 |
+
layer_weights, self.num_layers
|
1320 |
+
)
|
1321 |
+
)
|
1322 |
+
self.gam = Parameter(torch.FloatTensor([1.0]), requires_grad=True)
|
1323 |
+
self.scalar_parameters = ParameterList(
|
1324 |
+
[
|
1325 |
+
Parameter(
|
1326 |
+
torch.FloatTensor([layer_weights[i]]),
|
1327 |
+
requires_grad=True,
|
1328 |
+
)
|
1329 |
+
for i in range(self.num_layers)
|
1330 |
+
]
|
1331 |
+
)
|
1332 |
+
|
1333 |
+
|
1334 |
+
|
1335 |
+
if self.dropout:
|
1336 |
+
dropout_mask = torch.zeros(len(self.scalar_parameters))
|
1337 |
+
dropout_fill = torch.empty(len(self.scalar_parameters)).fill_(-1e20)
|
1338 |
+
self.register_buffer("dropout_mask", dropout_mask)
|
1339 |
+
self.register_buffer("dropout_fill", dropout_fill)
|
1340 |
+
|
1341 |
+
def forward(
|
1342 |
+
self,
|
1343 |
+
tensors: List[torch.Tensor], # pylint: disable=arguments-differ
|
1344 |
+
mask: torch.Tensor = None,
|
1345 |
+
) -> torch.Tensor:
|
1346 |
+
if len(tensors) != self.num_layers:
|
1347 |
+
raise Exception(
|
1348 |
+
"{} tensors were passed, but the module was initialized to \
|
1349 |
+
mix {} tensors.".format(
|
1350 |
+
len(tensors), self.num_layers
|
1351 |
+
)
|
1352 |
+
)
|
1353 |
+
|
1354 |
+
def _layer_norm(tensor, broadcast_mask, mask):
|
1355 |
+
tensor_masked = tensor * broadcast_mask
|
1356 |
+
batch_size, _, input_dim = tensors[0].size()
|
1357 |
+
|
1358 |
+
# mean for each sentence
|
1359 |
+
num_elements_not_masked = mask.sum(1) * input_dim
|
1360 |
+
mean = tensor_masked.view(batch_size, -1).sum(1)
|
1361 |
+
mean = (mean / num_elements_not_masked).view(batch_size, 1, 1)
|
1362 |
+
|
1363 |
+
variance = (((tensor_masked - mean) * broadcast_mask) ** 2).view(
|
1364 |
+
batch_size, -1
|
1365 |
+
).sum(1) / num_elements_not_masked
|
1366 |
+
normalized_tensor = (tensor - mean) / torch.sqrt(variance + 1e-12).view(
|
1367 |
+
batch_size, 1, 1
|
1368 |
+
)
|
1369 |
+
return normalized_tensor
|
1370 |
+
|
1371 |
+
# BUG: Pytorch bug fix when Parameters are not well copied across GPUs
|
1372 |
+
# https://github.com/pytorch/pytorch/issues/36035
|
1373 |
+
if len([parameter for parameter in self.scalar_parameters]) != self.num_layers:
|
1374 |
+
weights = torch.tensor(self.weights, device=tensors[0].device)
|
1375 |
+
gamma = torch.tensor(self.gam, device=tensors[0].device)
|
1376 |
+
else:
|
1377 |
+
weights = torch.cat([parameter for parameter in self.scalar_parameters])
|
1378 |
+
gamma = self.gam
|
1379 |
+
|
1380 |
+
if self.training and self.dropout:
|
1381 |
+
weights = torch.where(
|
1382 |
+
self.dropout_mask.uniform_() > self.dropout, weights, self.dropout_fill
|
1383 |
+
)
|
1384 |
+
|
1385 |
+
normed_weights = self.transform_fn(weights, dim=0)
|
1386 |
+
normed_weights = torch.split(normed_weights, split_size_or_sections=1)
|
1387 |
+
|
1388 |
+
if not self.layer_norm:
|
1389 |
+
pieces = []
|
1390 |
+
for weight, tensor in zip(normed_weights, tensors):
|
1391 |
+
pieces.append(weight * tensor)
|
1392 |
+
return gamma * sum(pieces)
|
1393 |
+
|
1394 |
+
else:
|
1395 |
+
mask_float = mask.float()
|
1396 |
+
broadcast_mask = mask_float.unsqueeze(-1)
|
1397 |
+
|
1398 |
+
pieces = []
|
1399 |
+
for weight, tensor in zip(normed_weights, tensors):
|
1400 |
+
pieces.append(weight * _layer_norm(tensor, broadcast_mask, mask_float))
|
1401 |
+
return gamma * sum(pieces)
|
1402 |
+
|
1403 |
+
|
1404 |
+
class FeedForward(nn.Module):
|
1405 |
+
"""Feed Forward Neural Network.
|
1406 |
+
|
1407 |
+
Args:
|
1408 |
+
in_dim (int): Number input features.
|
1409 |
+
out_dim (int): Number of output features. Default is just a score.
|
1410 |
+
hidden_sizes (List[int]): List with hidden layer sizes. Defaults to [3072,1024]
|
1411 |
+
activations (str): Name of the activation function to be used in the hidden
|
1412 |
+
layers. Defaults to 'Tanh'.
|
1413 |
+
final_activation (Optional[str]): Final activation if any.
|
1414 |
+
dropout (float): dropout to be used in the hidden layers.
|
1415 |
+
"""
|
1416 |
+
|
1417 |
+
def __init__(
|
1418 |
+
self,
|
1419 |
+
in_dim: int = 1024,
|
1420 |
+
out_dim: int = 1,
|
1421 |
+
hidden_sizes: List[int] = [3072, 1024],
|
1422 |
+
activations: str = "Tanh",
|
1423 |
+
final_activation: Optional[str] = None,
|
1424 |
+
dropout: float = 0.0,
|
1425 |
+
) -> None:
|
1426 |
+
super().__init__()
|
1427 |
+
modules = []
|
1428 |
+
modules.append(nn.Linear(in_dim, hidden_sizes[0]))
|
1429 |
+
modules.append(self.build_activation(activations))
|
1430 |
+
modules.append(nn.Dropout(dropout))
|
1431 |
+
|
1432 |
+
for i in range(1, len(hidden_sizes)):
|
1433 |
+
modules.append(nn.Linear(hidden_sizes[i - 1], hidden_sizes[i]))
|
1434 |
+
modules.append(self.build_activation(activations))
|
1435 |
+
modules.append(nn.Dropout(dropout))
|
1436 |
+
|
1437 |
+
modules.append(nn.Linear(hidden_sizes[-1], int(out_dim)))
|
1438 |
+
if final_activation is not None:
|
1439 |
+
modules.append(self.build_activation(final_activation))
|
1440 |
+
|
1441 |
+
self.ff = nn.Sequential(*modules)
|
1442 |
+
|
1443 |
+
def build_activation(self, activation: str) -> nn.Module:
|
1444 |
+
if hasattr(nn, activation.title()):
|
1445 |
+
return getattr(nn, activation.title())()
|
1446 |
+
else:
|
1447 |
+
raise Exception(f"{activation} is not a valid activation function!")
|
1448 |
+
|
1449 |
+
def forward(self, in_features: torch.Tensor) -> torch.Tensor:
|
1450 |
+
return self.ff(in_features)
|
1451 |
+
|
1452 |
+
|
1453 |
+
@add_start_docstrings(
|
1454 |
+
"""
|
1455 |
+
XLM-RoBERTa-XL Model with a multiple choice classification head on top (a linear layer on top of the pooled
|
1456 |
+
output and a softmax) e.g. for RocStories/SWAG tasks.
|
1457 |
+
""",
|
1458 |
+
XLM_ROBERTA_XL_START_DOCSTRING,
|
1459 |
+
)
|
1460 |
+
class XLMRobertaXLForEstimation(XLMRobertaXLPreTrainedModel):
|
1461 |
+
def __init__(self, config):
|
1462 |
+
super().__init__(config)
|
1463 |
+
|
1464 |
+
self.roberta = XLMRobertaXLModel(config, add_pooling_layer=False)
|
1465 |
+
self.layerwise_attention = LayerwiseAttention(
|
1466 |
+
layer_transformation=config.layer_transformation,
|
1467 |
+
num_hidden_layers=config.num_hidden_layers,
|
1468 |
+
dropout=config.dropout,
|
1469 |
+
layer_norm=config.layer_norm
|
1470 |
+
)
|
1471 |
+
|
1472 |
+
self.estimator = FeedForward(
|
1473 |
+
in_dim=config.hidden_size,
|
1474 |
+
hidden_sizes=config.estimator_sizes,
|
1475 |
+
)
|
1476 |
+
|
1477 |
+
self.init_weights()
|
1478 |
+
|
1479 |
+
def forward(
|
1480 |
+
self,
|
1481 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1482 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1483 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1484 |
+
labels: Optional[torch.LongTensor] = None,
|
1485 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1486 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1487 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1488 |
+
output_attentions: Optional[bool] = None,
|
1489 |
+
output_hidden_states: Optional[bool] = None,
|
1490 |
+
return_dict: Optional[bool] = None,
|
1491 |
+
) -> Union[Tuple, MultipleChoiceModelOutput]:
|
1492 |
+
r"""
|
1493 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1494 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
1495 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
1496 |
+
`input_ids` above)
|
1497 |
+
"""
|
1498 |
+
return_dict = False
|
1499 |
+
output_hidden_states = True
|
1500 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
1501 |
+
|
1502 |
+
flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
1503 |
+
flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
1504 |
+
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
1505 |
+
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
1506 |
+
flat_inputs_embeds = (
|
1507 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
1508 |
+
if inputs_embeds is not None
|
1509 |
+
else None
|
1510 |
+
)
|
1511 |
+
|
1512 |
+
outputs = self.roberta(
|
1513 |
+
flat_input_ids,
|
1514 |
+
position_ids=flat_position_ids,
|
1515 |
+
token_type_ids=flat_token_type_ids,
|
1516 |
+
attention_mask=flat_attention_mask,
|
1517 |
+
head_mask=head_mask,
|
1518 |
+
inputs_embeds=flat_inputs_embeds,
|
1519 |
+
output_attentions=output_attentions,
|
1520 |
+
output_hidden_states=output_hidden_states,
|
1521 |
+
return_dict=return_dict,
|
1522 |
+
)
|
1523 |
+
|
1524 |
+
if self.layerwise_attention:
|
1525 |
+
embeddings = self.layerwise_attention(
|
1526 |
+
outputs[2], attention_mask
|
1527 |
+
)
|
1528 |
+
else:
|
1529 |
+
embeddings = outputs[0]
|
1530 |
+
|
1531 |
+
CLS_tok = embeddings[:, 0, :] # for some reason at sentence level we take the first token score cf Comet
|
1532 |
+
|
1533 |
+
logits = self.estimator(CLS_tok)
|
1534 |
+
reshaped_logits = logits #.view(-1, num_choices)
|
1535 |
+
|
1536 |
+
loss = None
|
1537 |
+
if labels is not None:
|
1538 |
+
loss_fct = CrossEntropyLoss()
|
1539 |
+
loss = loss_fct(reshaped_logits, labels)
|
1540 |
+
|
1541 |
+
if not return_dict:
|
1542 |
+
output = (reshaped_logits,) + outputs[2:]
|
1543 |
+
return ((loss,) + output) if loss is not None else output
|
1544 |
+
|
1545 |
+
return MultipleChoiceModelOutput(
|
1546 |
+
loss=loss,
|
1547 |
+
logits=reshaped_logits,
|
1548 |
+
hidden_states=outputs.hidden_states,
|
1549 |
+
attentions=outputs.attentions,
|
1550 |
+
)
|
1551 |
+
|
1552 |
+
|
1553 |
+
@add_start_docstrings(
|
1554 |
+
"""
|
1555 |
+
XLM-RoBERTa-XL Model with a token classification head on top (a linear layer on top of the hidden-states
|
1556 |
+
output) e.g. for Named-Entity-Recognition (NER) tasks.
|
1557 |
+
""",
|
1558 |
+
XLM_ROBERTA_XL_START_DOCSTRING,
|
1559 |
+
)
|
1560 |
+
class XLMRobertaXLForTokenClassification(XLMRobertaXLPreTrainedModel):
|
1561 |
+
def __init__(self, config):
|
1562 |
+
super().__init__(config)
|
1563 |
+
self.num_labels = config.num_labels
|
1564 |
+
|
1565 |
+
self.roberta = XLMRobertaXLModel(config, add_pooling_layer=False)
|
1566 |
+
classifier_dropout = (
|
1567 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1568 |
+
)
|
1569 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1570 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1571 |
+
|
1572 |
+
self.init_weights()
|
1573 |
+
|
1574 |
+
@add_start_docstrings_to_model_forward(XLM_ROBERTA_XL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1575 |
+
@add_code_sample_docstrings(
|
1576 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1577 |
+
output_type=TokenClassifierOutput,
|
1578 |
+
config_class=_CONFIG_FOR_DOC,
|
1579 |
+
)
|
1580 |
+
def forward(
|
1581 |
+
self,
|
1582 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1583 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1584 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1585 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1586 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1587 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1588 |
+
labels: Optional[torch.LongTensor] = None,
|
1589 |
+
output_attentions: Optional[bool] = None,
|
1590 |
+
output_hidden_states: Optional[bool] = None,
|
1591 |
+
return_dict: Optional[bool] = None,
|
1592 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
1593 |
+
r"""
|
1594 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1595 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1596 |
+
"""
|
1597 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1598 |
+
|
1599 |
+
outputs = self.roberta(
|
1600 |
+
input_ids,
|
1601 |
+
attention_mask=attention_mask,
|
1602 |
+
token_type_ids=token_type_ids,
|
1603 |
+
position_ids=position_ids,
|
1604 |
+
head_mask=head_mask,
|
1605 |
+
inputs_embeds=inputs_embeds,
|
1606 |
+
output_attentions=output_attentions,
|
1607 |
+
output_hidden_states=output_hidden_states,
|
1608 |
+
return_dict=return_dict,
|
1609 |
+
)
|
1610 |
+
|
1611 |
+
sequence_output = outputs[0]
|
1612 |
+
|
1613 |
+
sequence_output = self.dropout(sequence_output)
|
1614 |
+
logits = self.classifier(sequence_output)
|
1615 |
+
|
1616 |
+
loss = None
|
1617 |
+
if labels is not None:
|
1618 |
+
loss_fct = CrossEntropyLoss()
|
1619 |
+
# Only keep active parts of the loss
|
1620 |
+
if attention_mask is not None:
|
1621 |
+
active_loss = attention_mask.view(-1) == 1
|
1622 |
+
active_logits = logits.view(-1, self.num_labels)
|
1623 |
+
active_labels = torch.where(
|
1624 |
+
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
|
1625 |
+
)
|
1626 |
+
loss = loss_fct(active_logits, active_labels)
|
1627 |
+
else:
|
1628 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1629 |
+
|
1630 |
+
if not return_dict:
|
1631 |
+
output = (logits,) + outputs[2:]
|
1632 |
+
return ((loss,) + output) if loss is not None else output
|
1633 |
+
|
1634 |
+
return TokenClassifierOutput(
|
1635 |
+
loss=loss,
|
1636 |
+
logits=logits,
|
1637 |
+
hidden_states=outputs.hidden_states,
|
1638 |
+
attentions=outputs.attentions,
|
1639 |
+
)
|
1640 |
+
|
1641 |
+
|
1642 |
+
class XLMRobertaXLClassificationHead(nn.Module):
|
1643 |
+
"""Head for sentence-level classification tasks."""
|
1644 |
+
|
1645 |
+
def __init__(self, config):
|
1646 |
+
super().__init__()
|
1647 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
1648 |
+
classifier_dropout = (
|
1649 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1650 |
+
)
|
1651 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1652 |
+
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
1653 |
+
|
1654 |
+
def forward(self, features, **kwargs):
|
1655 |
+
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
1656 |
+
x = self.dropout(x)
|
1657 |
+
x = self.dense(x)
|
1658 |
+
x = torch.tanh(x)
|
1659 |
+
x = self.dropout(x)
|
1660 |
+
x = self.out_proj(x)
|
1661 |
+
return x
|
1662 |
+
|
1663 |
+
|
1664 |
+
@add_start_docstrings(
|
1665 |
+
"""
|
1666 |
+
XLM-RoBERTa-XL Model with a span classification head on top for extractive question-answering tasks like SQuAD
|
1667 |
+
(a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1668 |
+
""",
|
1669 |
+
XLM_ROBERTA_XL_START_DOCSTRING,
|
1670 |
+
)
|
1671 |
+
class XLMRobertaXLForQuestionAnswering(XLMRobertaXLPreTrainedModel):
|
1672 |
+
def __init__(self, config):
|
1673 |
+
super().__init__(config)
|
1674 |
+
self.num_labels = config.num_labels
|
1675 |
+
|
1676 |
+
self.roberta = XLMRobertaXLModel(config, add_pooling_layer=False)
|
1677 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
1678 |
+
|
1679 |
+
self.init_weights()
|
1680 |
+
|
1681 |
+
@add_start_docstrings_to_model_forward(XLM_ROBERTA_XL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1682 |
+
@add_code_sample_docstrings(
|
1683 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1684 |
+
output_type=QuestionAnsweringModelOutput,
|
1685 |
+
config_class=_CONFIG_FOR_DOC,
|
1686 |
+
)
|
1687 |
+
def forward(
|
1688 |
+
self,
|
1689 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1690 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1691 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1692 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1693 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1694 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1695 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1696 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1697 |
+
output_attentions: Optional[bool] = None,
|
1698 |
+
output_hidden_states: Optional[bool] = None,
|
1699 |
+
return_dict: Optional[bool] = None,
|
1700 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1701 |
+
r"""
|
1702 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1703 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1704 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1705 |
+
are not taken into account for computing the loss.
|
1706 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1707 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1708 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1709 |
+
are not taken into account for computing the loss.
|
1710 |
+
"""
|
1711 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1712 |
+
|
1713 |
+
outputs = self.roberta(
|
1714 |
+
input_ids,
|
1715 |
+
attention_mask=attention_mask,
|
1716 |
+
token_type_ids=token_type_ids,
|
1717 |
+
position_ids=position_ids,
|
1718 |
+
head_mask=head_mask,
|
1719 |
+
inputs_embeds=inputs_embeds,
|
1720 |
+
output_attentions=output_attentions,
|
1721 |
+
output_hidden_states=output_hidden_states,
|
1722 |
+
return_dict=return_dict,
|
1723 |
+
)
|
1724 |
+
|
1725 |
+
sequence_output = outputs[0]
|
1726 |
+
|
1727 |
+
logits = self.qa_outputs(sequence_output)
|
1728 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1729 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1730 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1731 |
+
|
1732 |
+
total_loss = None
|
1733 |
+
if start_positions is not None and end_positions is not None:
|
1734 |
+
# If we are on multi-GPU, split add a dimension
|
1735 |
+
if len(start_positions.size()) > 1:
|
1736 |
+
start_positions = start_positions.squeeze(-1)
|
1737 |
+
if len(end_positions.size()) > 1:
|
1738 |
+
end_positions = end_positions.squeeze(-1)
|
1739 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1740 |
+
ignored_index = start_logits.size(1)
|
1741 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1742 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1743 |
+
|
1744 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1745 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1746 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1747 |
+
total_loss = (start_loss + end_loss) / 2
|
1748 |
+
|
1749 |
+
if not return_dict:
|
1750 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1751 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1752 |
+
|
1753 |
+
return QuestionAnsweringModelOutput(
|
1754 |
+
loss=total_loss,
|
1755 |
+
start_logits=start_logits,
|
1756 |
+
end_logits=end_logits,
|
1757 |
+
hidden_states=outputs.hidden_states,
|
1758 |
+
attentions=outputs.attentions,
|
1759 |
+
)
|
1760 |
+
|
1761 |
+
|
1762 |
+
# Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids
|
1763 |
+
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
|
1764 |
+
"""
|
1765 |
+
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
|
1766 |
+
are ignored. This is modified from fairseq's `utils.make_positions`.
|
1767 |
+
|
1768 |
+
Args:
|
1769 |
+
x: torch.Tensor x:
|
1770 |
+
|
1771 |
+
Returns: torch.Tensor
|
1772 |
+
"""
|
1773 |
+
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
|
1774 |
+
mask = input_ids.ne(padding_idx).int()
|
1775 |
+
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
|
1776 |
+
return incremental_indices.long() + padding_idx
|
1777 |
+
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e1bafc1984c123fcc153e970961d014fecb3026d731458ddecd2a24eae85c46
|
3 |
+
size 6971794694
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true}}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "sep_token": "</s>", "cls_token": "<s>", "unk_token": "<unk>", "pad_token": "<pad>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "sp_model_kwargs": {}, "special_tokens_map_file": "./special_tokens_map.json", "name_or_path": "./", "tokenizer_class": "XLMRobertaTokenizer"}
|