File size: 7,416 Bytes
78e90f0
 
 
 
 
7c5d110
 
ed0cc5a
 
 
 
 
78e90f0
 
 
a736c2d
 
 
 
 
 
 
 
 
 
 
 
 
78e90f0
 
 
 
 
 
 
7c5d110
ed0cc5a
 
 
 
 
 
78e90f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed0cc5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78e90f0
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
datasets:
- ktgiahieu/maccrobat2018_2020
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: BioMedical_NER-maccrobat-bert
  results: []
widget:
- text: "CASE: A 28-year-old previously healthy man presented with a 6-week history of palpitations.
The symptoms occurred during rest, 2–3 times per week, lasted up to 30 minutes at a time and were associated with dyspnea.
Except for a grade 2/6 holosystolic tricuspid regurgitation murmur (best heard at the left sternal border with inspiratory accentuation), physical examination yielded unremarkable findings."
  example_title: "example 1"
- text: "A 63-year-old woman with no known cardiac history presented with a sudden onset of dyspnea requiring intubation and ventilatory support out of hospital.
She denied preceding symptoms of chest discomfort, palpitations, syncope or infection.
The patient was afebrile and normotensive, with a sinus tachycardia of 140 beats/min."
  example_title: "example 2"
- text: "A 48 year-old female presented with vaginal bleeding and abnormal Pap smears.
Upon diagnosis of invasive non-keratinizing SCC of the cervix, she underwent a radical hysterectomy with salpingo-oophorectomy which demonstrated positive spread to the pelvic lymph nodes and the parametrium.
Pathological examination revealed that the tumour also extensively involved the lower uterine segment."
  example_title: "example 3"
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# BioMedical_NER-maccrobat-bert

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on [maccrobat2018_2020](https://huggingface.co/datasets/ktgiahieu/maccrobat2018_2020) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3418
- Precision: 0.8668
- Recall: 0.9491
- F1: 0.9061
- Accuracy: 0.9501

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 45   | 1.7363          | 0.4262    | 0.0055 | 0.0108 | 0.6274   |
| No log        | 2.0   | 90   | 1.3805          | 0.3534    | 0.2073 | 0.2613 | 0.6565   |
| No log        | 3.0   | 135  | 1.1713          | 0.4026    | 0.3673 | 0.3841 | 0.6908   |
| No log        | 4.0   | 180  | 1.0551          | 0.4392    | 0.5309 | 0.4807 | 0.7149   |
| No log        | 5.0   | 225  | 0.9591          | 0.4893    | 0.6012 | 0.5395 | 0.7496   |
| No log        | 6.0   | 270  | 0.8656          | 0.5156    | 0.6483 | 0.5744 | 0.7722   |
| No log        | 7.0   | 315  | 0.8613          | 0.5124    | 0.6871 | 0.5870 | 0.7716   |
| No log        | 8.0   | 360  | 0.7524          | 0.5699    | 0.7114 | 0.6329 | 0.8110   |
| No log        | 9.0   | 405  | 0.6966          | 0.5884    | 0.7374 | 0.6545 | 0.8265   |
| No log        | 10.0  | 450  | 0.6564          | 0.6147    | 0.7678 | 0.6827 | 0.8373   |
| No log        | 11.0  | 495  | 0.5950          | 0.6484    | 0.7826 | 0.7092 | 0.8563   |
| 0.9321        | 12.0  | 540  | 0.6083          | 0.6578    | 0.8001 | 0.7220 | 0.8587   |
| 0.9321        | 13.0  | 585  | 0.5821          | 0.6682    | 0.8206 | 0.7366 | 0.8688   |
| 0.9321        | 14.0  | 630  | 0.5578          | 0.6787    | 0.8324 | 0.7477 | 0.8744   |
| 0.9321        | 15.0  | 675  | 0.4819          | 0.7338    | 0.8484 | 0.7870 | 0.8974   |
| 0.9321        | 16.0  | 720  | 0.4775          | 0.7461    | 0.8573 | 0.7978 | 0.9020   |
| 0.9321        | 17.0  | 765  | 0.4786          | 0.7395    | 0.8600 | 0.7952 | 0.9020   |
| 0.9321        | 18.0  | 810  | 0.4481          | 0.7647    | 0.8740 | 0.8157 | 0.9102   |
| 0.9321        | 19.0  | 855  | 0.4597          | 0.7638    | 0.8799 | 0.8177 | 0.9108   |
| 0.9321        | 20.0  | 900  | 0.4551          | 0.7617    | 0.8835 | 0.8181 | 0.9096   |
| 0.9321        | 21.0  | 945  | 0.4365          | 0.7698    | 0.8873 | 0.8244 | 0.9142   |
| 0.9321        | 22.0  | 990  | 0.3993          | 0.7986    | 0.8957 | 0.8444 | 0.9247   |
| 0.2115        | 23.0  | 1035 | 0.4162          | 0.7950    | 0.9014 | 0.8449 | 0.9234   |
| 0.2115        | 24.0  | 1080 | 0.4188          | 0.8007    | 0.9042 | 0.8493 | 0.9248   |
| 0.2115        | 25.0  | 1125 | 0.3996          | 0.8105    | 0.9103 | 0.8575 | 0.9291   |
| 0.2115        | 26.0  | 1170 | 0.3775          | 0.8226    | 0.9134 | 0.8657 | 0.9333   |
| 0.2115        | 27.0  | 1215 | 0.3656          | 0.8297    | 0.9187 | 0.8720 | 0.9364   |
| 0.2115        | 28.0  | 1260 | 0.3744          | 0.8323    | 0.9217 | 0.8747 | 0.9371   |
| 0.2115        | 29.0  | 1305 | 0.3763          | 0.8296    | 0.9229 | 0.8738 | 0.9364   |
| 0.2115        | 30.0  | 1350 | 0.3506          | 0.8454    | 0.9272 | 0.8844 | 0.9414   |
| 0.2115        | 31.0  | 1395 | 0.3602          | 0.8441    | 0.9301 | 0.8850 | 0.9413   |
| 0.2115        | 32.0  | 1440 | 0.3617          | 0.8359    | 0.9303 | 0.8806 | 0.9400   |
| 0.2115        | 33.0  | 1485 | 0.3737          | 0.8352    | 0.9310 | 0.8805 | 0.9388   |
| 0.0818        | 34.0  | 1530 | 0.3541          | 0.8477    | 0.9352 | 0.8893 | 0.9438   |
| 0.0818        | 35.0  | 1575 | 0.3553          | 0.8487    | 0.9377 | 0.8910 | 0.9439   |
| 0.0818        | 36.0  | 1620 | 0.3583          | 0.8476    | 0.9367 | 0.8899 | 0.9438   |
| 0.0818        | 37.0  | 1665 | 0.3318          | 0.8642    | 0.9400 | 0.9005 | 0.9484   |
| 0.0818        | 38.0  | 1710 | 0.3449          | 0.8598    | 0.9409 | 0.8985 | 0.9471   |
| 0.0818        | 39.0  | 1755 | 0.3466          | 0.8591    | 0.9419 | 0.8986 | 0.9468   |
| 0.0818        | 40.0  | 1800 | 0.3494          | 0.8591    | 0.9426 | 0.8989 | 0.9473   |
| 0.0818        | 41.0  | 1845 | 0.3494          | 0.8591    | 0.9451 | 0.9001 | 0.9475   |
| 0.0818        | 42.0  | 1890 | 0.3545          | 0.8588    | 0.9462 | 0.9004 | 0.9477   |
| 0.0818        | 43.0  | 1935 | 0.3569          | 0.8599    | 0.9460 | 0.9009 | 0.9470   |
| 0.0818        | 44.0  | 1980 | 0.3465          | 0.8645    | 0.9468 | 0.9038 | 0.9492   |
| 0.0469        | 45.0  | 2025 | 0.3424          | 0.8663    | 0.9489 | 0.9057 | 0.9498   |
| 0.0469        | 46.0  | 2070 | 0.3460          | 0.8643    | 0.9481 | 0.9043 | 0.9490   |
| 0.0469        | 47.0  | 2115 | 0.3445          | 0.8658    | 0.9483 | 0.9052 | 0.9496   |
| 0.0469        | 48.0  | 2160 | 0.3387          | 0.8701    | 0.9500 | 0.9083 | 0.9508   |
| 0.0469        | 49.0  | 2205 | 0.3432          | 0.8671    | 0.9491 | 0.9063 | 0.9501   |
| 0.0469        | 50.0  | 2250 | 0.3418          | 0.8668    | 0.9491 | 0.9061 | 0.9501   |


### Framework versions

- Transformers 4.32.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3