--- license: apache-2.0 base_model: facebook/convnextv2-tiny-1k-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision model-index: - name: convnextv2-tiny-1k-224-finetuned-crop-neck-style results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8127853881278538 - name: Precision type: precision value: 0.8388735739429154 --- # convnextv2-tiny-1k-224-finetuned-crop-neck-style This model is a fine-tuned version of [facebook/convnextv2-tiny-1k-224](https://huggingface.co/facebook/convnextv2-tiny-1k-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7591 - Accuracy: 0.8128 - Precision: 0.8389 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:| | No log | 1.0 | 88 | 0.7865 | 0.7717 | 0.8100 | | No log | 2.0 | 176 | 0.7591 | 0.8128 | 0.8389 | | No log | 3.0 | 264 | 0.8601 | 0.7854 | 0.8206 | | No log | 4.0 | 352 | 0.8518 | 0.8082 | 0.8454 | | No log | 5.0 | 440 | 0.7959 | 0.8128 | 0.8295 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1