--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy base_model: distilbert-base-uncased model-index: - name: kg_model results: [] --- # kg_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3039 - Precision: 0.7629 - Recall: 0.7025 - F1: 0.7315 - Accuracy: 0.8965 ## Model description Lite model to extract entities and relation between them, could be leveraged for Question Answering and Querying tasks. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3736 | 1.0 | 1063 | 0.3379 | 0.7542 | 0.6217 | 0.6816 | 0.8813 | | 0.3078 | 2.0 | 2126 | 0.3075 | 0.7728 | 0.6678 | 0.7164 | 0.8929 | | 0.267 | 3.0 | 3189 | 0.3017 | 0.7597 | 0.6999 | 0.7285 | 0.8954 | | 0.2455 | 4.0 | 4252 | 0.3039 | 0.7629 | 0.7025 | 0.7315 | 0.8965 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2