--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: finetuning-sentiment-analysis-en-id results: [] --- # finetuning-sentiment-analysis-en-id This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1654 - Accuracy: 0.9527 - F1: 0.9646 - Precision: 0.9641 - Recall: 0.9652 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.4566 | 1.0 | 1602 | 0.3666 | 0.8473 | 0.8909 | 0.8530 | 0.9323 | | 0.3458 | 2.0 | 3204 | 0.2193 | 0.9238 | 0.9432 | 0.9410 | 0.9454 | | 0.2362 | 3.0 | 4806 | 0.1654 | 0.9527 | 0.9646 | 0.9641 | 0.9652 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1