--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: finetuning-sentiment-analysis-en results: [] --- # finetuning-sentiment-analysis-en This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0792 - Accuracy: 0.9803 - F1: 0.9856 - Precision: 0.9875 - Recall: 0.9837 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.426 | 1.0 | 1408 | 0.2718 | 0.8910 | 0.9201 | 0.9251 | 0.9151 | | 0.3247 | 2.0 | 2816 | 0.1552 | 0.9540 | 0.9665 | 0.9656 | 0.9674 | | 0.1582 | 3.0 | 4224 | 0.0792 | 0.9803 | 0.9856 | 0.9875 | 0.9837 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1