vladjr commited on
Commit
53e52b5
1 Parent(s): c2b6239

Training in progress epoch 0

Browse files
Files changed (7) hide show
  1. README.md +55 -0
  2. config.json +479 -0
  3. special_tokens_map.json +7 -0
  4. tf_model.h5 +3 -0
  5. tokenizer.json +0 -0
  6. tokenizer_config.json +55 -0
  7. vocab.txt +0 -0
README.md ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: bert-base-uncased
4
+ tags:
5
+ - generated_from_keras_callback
6
+ model-index:
7
+ - name: vladjr/bert-full-competicao
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information Keras had access to. You should
12
+ probably proofread and complete it, then remove this comment. -->
13
+
14
+ # vladjr/bert-full-competicao
15
+
16
+ This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Train Loss: 3.1264
19
+ - Validation Loss: 1.3286
20
+ - Train Accuracy: 0.9194
21
+ - Epoch: 0
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2900, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
41
+ - training_precision: float32
42
+
43
+ ### Training results
44
+
45
+ | Train Loss | Validation Loss | Train Accuracy | Epoch |
46
+ |:----------:|:---------------:|:--------------:|:-----:|
47
+ | 3.1264 | 1.3286 | 0.9194 | 0 |
48
+
49
+
50
+ ### Framework versions
51
+
52
+ - Transformers 4.34.1
53
+ - TensorFlow 2.14.0
54
+ - Datasets 2.14.6
55
+ - Tokenizers 0.14.1
config.json ADDED
@@ -0,0 +1,479 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "bert-base-uncased",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "secrecy rate",
14
+ "1": "markov geographic model",
15
+ "2": "graph convolution networks",
16
+ "3": "convolutional neural network",
17
+ "4": "computed tomography",
18
+ "5": "betweenness centrality",
19
+ "6": "forward error correction",
20
+ "7": "fusion center",
21
+ "8": "random vaccination",
22
+ "9": "adversarial risk analysis",
23
+ "10": "nash equilibrium",
24
+ "11": "maximum likelihood",
25
+ "12": "synthetic aperture radar",
26
+ "13": "sound pressure level",
27
+ "14": "support vector machine",
28
+ "15": "high performance computing",
29
+ "16": "access point",
30
+ "17": "downlink",
31
+ "18": "strictly piecewise",
32
+ "19": "atomic , independent , declarative , and absolute",
33
+ "20": "shortest dependency path",
34
+ "21": "multi - layer same - resolution compressed",
35
+ "22": "marginal contribution",
36
+ "23": "spectral angle distance",
37
+ "24": "information retrieval",
38
+ "25": "resource description framework",
39
+ "26": "atomic function computation",
40
+ "27": "part of speech",
41
+ "28": "long term evolution",
42
+ "29": "mean squared error",
43
+ "30": "permutation invariant training",
44
+ "31": "minimum generation error",
45
+ "32": "alternating least squares",
46
+ "33": "reinforcement learning",
47
+ "34": "machine learning",
48
+ "35": "recurrent neural network",
49
+ "36": "recurrent weighted average",
50
+ "37": "question answering",
51
+ "38": "multiple parallel instances",
52
+ "39": "gaussian process",
53
+ "40": "base station",
54
+ "41": "receiver operating characteristic",
55
+ "42": "threshold algorithm",
56
+ "43": "click through rates",
57
+ "44": "virtual machine",
58
+ "45": "test case prioritization",
59
+ "46": "neural network",
60
+ "47": "belief propagation",
61
+ "48": "contention adaptions",
62
+ "49": "dynamic induction control",
63
+ "50": "information embedding cost",
64
+ "51": "lifelong metric learning",
65
+ "52": "linear programming",
66
+ "53": "multiple description coding",
67
+ "54": "latent dirichlet allocation",
68
+ "55": "collaborative filtering",
69
+ "56": "medium access control",
70
+ "57": "description logics",
71
+ "58": "radio frequency",
72
+ "59": "adaptive radix tree",
73
+ "60": "integer linear programming",
74
+ "61": "minimum risk training",
75
+ "62": "constructive interference",
76
+ "63": "line of sight",
77
+ "64": "deep belief network",
78
+ "65": "average precision",
79
+ "66": "dropped pronoun",
80
+ "67": "rate distortion function",
81
+ "68": "intellectual property",
82
+ "69": "geometric programming",
83
+ "70": "gaussian mixture model",
84
+ "71": "language model",
85
+ "72": "adversarially robust distillation",
86
+ "73": "controlled natural language",
87
+ "74": "federated learning",
88
+ "75": "augmented reality",
89
+ "76": "matrix factorization",
90
+ "77": "principal component analysis",
91
+ "78": "node classification",
92
+ "79": "smart object",
93
+ "80": "poisson point process",
94
+ "81": "attention network",
95
+ "82": "constrained least squares",
96
+ "83": "global positioning system",
97
+ "84": "prepositional phrase",
98
+ "85": "artificial neural network",
99
+ "86": "directed belief net",
100
+ "87": "false positive rate",
101
+ "88": "latent semantic analysis",
102
+ "89": "artificial intelligence",
103
+ "90": "model predictive control",
104
+ "91": "genetic algorithm",
105
+ "92": "access part'",
106
+ "93": "sensing application recently",
107
+ "94": "mutual information",
108
+ "95": "universal dependencies",
109
+ "96": "secrecy outage probability",
110
+ "97": "statistical compressed sensing",
111
+ "98": "information bottleneck",
112
+ "99": "ergodic sum capacity",
113
+ "100": "image signal processor",
114
+ "101": "particle swarm optimization",
115
+ "102": "differential rectifier",
116
+ "103": "technical debt",
117
+ "104": "deep learning",
118
+ "105": "hybrid monte carlo",
119
+ "106": "ordinary differential equation",
120
+ "107": "scalar multiplication",
121
+ "108": "inductive logic programming",
122
+ "109": "simulated annealing",
123
+ "110": "entity set expansion",
124
+ "111": "autism spectrum disorders",
125
+ "112": "artificial bee colony",
126
+ "113": "property graph",
127
+ "114": "centralized solution",
128
+ "115": "social status",
129
+ "116": "taint dependency sequences",
130
+ "117": "expectation maximization",
131
+ "118": "machine translation",
132
+ "119": "dynamic vision sensor",
133
+ "120": "automatic speech recognition",
134
+ "121": "user equipment",
135
+ "122": "random neural networks",
136
+ "123": "mean absolute error",
137
+ "124": "bayesian network",
138
+ "125": "singular value decomposition",
139
+ "126": "multimedia event detection",
140
+ "127": "median recovery error",
141
+ "128": "nearest neighbor",
142
+ "129": "friendly jamming",
143
+ "130": "formal methods",
144
+ "131": "intraclass correlation coefficient",
145
+ "132": "central cloud",
146
+ "133": "cumulative activation",
147
+ "134": "mitral valve",
148
+ "135": "discriminative correlation filter",
149
+ "136": "transformation error",
150
+ "137": "relation extraction",
151
+ "138": "linear discriminant analysis",
152
+ "139": "integrated circuit",
153
+ "140": "stochastic block model",
154
+ "141": "information extraction",
155
+ "142": "socially assistive robots",
156
+ "143": "hierarchical attention network",
157
+ "144": "deep reinforcement learning",
158
+ "145": "logistic regression",
159
+ "146": "message passing interface",
160
+ "147": "bug reports",
161
+ "148": "alzheimer 's disease",
162
+ "149": "data science and analytics",
163
+ "150": "automatic differentiation",
164
+ "151": "conditional random field",
165
+ "152": "false negatives",
166
+ "153": "sequential monte carlo",
167
+ "154": "basic question",
168
+ "155": "physical access",
169
+ "156": "point multiplication",
170
+ "157": "leicester scientific corpus",
171
+ "158": "transformation encoder",
172
+ "159": "deep convolutional neural network",
173
+ "160": "thompson sampling",
174
+ "161": "orthogonal least square",
175
+ "162": "acquaintance vaccination",
176
+ "163": "rate - selective",
177
+ "164": "dynamic assignment ratio",
178
+ "165": "multiple description",
179
+ "166": "million song dataset",
180
+ "167": "machine type communications",
181
+ "168": "self attention network",
182
+ "169": "term frequency",
183
+ "170": "portable document format",
184
+ "171": "parameter server",
185
+ "172": "physical machines",
186
+ "173": "exponential moving average",
187
+ "174": "matrix pair beamformer",
188
+ "175": "optimal transport",
189
+ "176": "finite element method",
190
+ "177": "differential evolution",
191
+ "178": "product - based neural network",
192
+ "179": "mean average conceptual similarity",
193
+ "180": "power splitting",
194
+ "181": "parkinson 's disease",
195
+ "182": "new persian",
196
+ "183": "artifact disentanglement network",
197
+ "184": "statistical machine translation",
198
+ "185": "manifold geometry matching",
199
+ "186": "batch normalization",
200
+ "187": "rank residual constraint",
201
+ "188": "oblivious transfer",
202
+ "189": "positive pointwise mutual information",
203
+ "190": "triad significance profile",
204
+ "191": "reverse classification accuracy",
205
+ "192": "fully connected",
206
+ "193": "corresponding arcs",
207
+ "194": "maximum a posteriori",
208
+ "195": "false positive",
209
+ "196": "certain natural language",
210
+ "197": "strategic dependency",
211
+ "198": "strictly local",
212
+ "199": "internet protocol",
213
+ "200": "foveal tilt effects",
214
+ "201": "dynamic cluster",
215
+ "202": "domain name system",
216
+ "203": "mean average precision",
217
+ "204": "semantic role labeling",
218
+ "205": "recurrent convolution",
219
+ "206": "optical character recognition",
220
+ "207": "charging current",
221
+ "208": "low resolution",
222
+ "209": "power system operations",
223
+ "210": "compressive sensing",
224
+ "211": "optimal power flow",
225
+ "212": "deep context prediction",
226
+ "213": "secondary users",
227
+ "214": "o - d demand estimation",
228
+ "215": "fully convolutional neural network",
229
+ "216": "maximal ratio combining",
230
+ "217": "quantile random forest",
231
+ "218": "adaptive threshold",
232
+ "219": "situation entity",
233
+ "220": "relay station",
234
+ "221": "discrete choice models",
235
+ "222": "random forest",
236
+ "223": "left ventricle",
237
+ "224": "artificial noise"
238
+ },
239
+ "initializer_range": 0.02,
240
+ "intermediate_size": 3072,
241
+ "label2id": {
242
+ "access part'": 92,
243
+ "access point": 16,
244
+ "acquaintance vaccination": 162,
245
+ "adaptive radix tree": 59,
246
+ "adaptive threshold": 218,
247
+ "adversarial risk analysis": 9,
248
+ "adversarially robust distillation": 72,
249
+ "alternating least squares": 32,
250
+ "alzheimer 's disease": 148,
251
+ "artifact disentanglement network": 183,
252
+ "artificial bee colony": 112,
253
+ "artificial intelligence": 89,
254
+ "artificial neural network": 85,
255
+ "artificial noise": 224,
256
+ "atomic , independent , declarative , and absolute": 19,
257
+ "atomic function computation": 26,
258
+ "attention network": 81,
259
+ "augmented reality": 75,
260
+ "autism spectrum disorders": 111,
261
+ "automatic differentiation": 150,
262
+ "automatic speech recognition": 120,
263
+ "average precision": 65,
264
+ "base station": 40,
265
+ "basic question": 154,
266
+ "batch normalization": 186,
267
+ "bayesian network": 124,
268
+ "belief propagation": 47,
269
+ "betweenness centrality": 5,
270
+ "bug reports": 147,
271
+ "central cloud": 132,
272
+ "centralized solution": 114,
273
+ "certain natural language": 196,
274
+ "charging current": 207,
275
+ "click through rates": 43,
276
+ "collaborative filtering": 55,
277
+ "compressive sensing": 210,
278
+ "computed tomography": 4,
279
+ "conditional random field": 151,
280
+ "constrained least squares": 82,
281
+ "constructive interference": 62,
282
+ "contention adaptions": 48,
283
+ "controlled natural language": 73,
284
+ "convolutional neural network": 3,
285
+ "corresponding arcs": 193,
286
+ "cumulative activation": 133,
287
+ "data science and analytics": 149,
288
+ "deep belief network": 64,
289
+ "deep context prediction": 212,
290
+ "deep convolutional neural network": 159,
291
+ "deep learning": 104,
292
+ "deep reinforcement learning": 144,
293
+ "description logics": 57,
294
+ "differential evolution": 177,
295
+ "differential rectifier": 102,
296
+ "directed belief net": 86,
297
+ "discrete choice models": 221,
298
+ "discriminative correlation filter": 135,
299
+ "domain name system": 202,
300
+ "downlink": 17,
301
+ "dropped pronoun": 66,
302
+ "dynamic assignment ratio": 164,
303
+ "dynamic cluster": 201,
304
+ "dynamic induction control": 49,
305
+ "dynamic vision sensor": 119,
306
+ "entity set expansion": 110,
307
+ "ergodic sum capacity": 99,
308
+ "expectation maximization": 117,
309
+ "exponential moving average": 173,
310
+ "false negatives": 152,
311
+ "false positive": 195,
312
+ "false positive rate": 87,
313
+ "federated learning": 74,
314
+ "finite element method": 176,
315
+ "formal methods": 130,
316
+ "forward error correction": 6,
317
+ "foveal tilt effects": 200,
318
+ "friendly jamming": 129,
319
+ "fully connected": 192,
320
+ "fully convolutional neural network": 215,
321
+ "fusion center": 7,
322
+ "gaussian mixture model": 70,
323
+ "gaussian process": 39,
324
+ "genetic algorithm": 91,
325
+ "geometric programming": 69,
326
+ "global positioning system": 83,
327
+ "graph convolution networks": 2,
328
+ "hierarchical attention network": 143,
329
+ "high performance computing": 15,
330
+ "hybrid monte carlo": 105,
331
+ "image signal processor": 100,
332
+ "inductive logic programming": 108,
333
+ "information bottleneck": 98,
334
+ "information embedding cost": 50,
335
+ "information extraction": 141,
336
+ "information retrieval": 24,
337
+ "integer linear programming": 60,
338
+ "integrated circuit": 139,
339
+ "intellectual property": 68,
340
+ "internet protocol": 199,
341
+ "intraclass correlation coefficient": 131,
342
+ "language model": 71,
343
+ "latent dirichlet allocation": 54,
344
+ "latent semantic analysis": 88,
345
+ "left ventricle": 223,
346
+ "leicester scientific corpus": 157,
347
+ "lifelong metric learning": 51,
348
+ "line of sight": 63,
349
+ "linear discriminant analysis": 138,
350
+ "linear programming": 52,
351
+ "logistic regression": 145,
352
+ "long term evolution": 28,
353
+ "low resolution": 208,
354
+ "machine learning": 34,
355
+ "machine translation": 118,
356
+ "machine type communications": 167,
357
+ "manifold geometry matching": 185,
358
+ "marginal contribution": 22,
359
+ "markov geographic model": 1,
360
+ "matrix factorization": 76,
361
+ "matrix pair beamformer": 174,
362
+ "maximal ratio combining": 216,
363
+ "maximum a posteriori": 194,
364
+ "maximum likelihood": 11,
365
+ "mean absolute error": 123,
366
+ "mean average conceptual similarity": 179,
367
+ "mean average precision": 203,
368
+ "mean squared error": 29,
369
+ "median recovery error": 127,
370
+ "medium access control": 56,
371
+ "message passing interface": 146,
372
+ "million song dataset": 166,
373
+ "minimum generation error": 31,
374
+ "minimum risk training": 61,
375
+ "mitral valve": 134,
376
+ "model predictive control": 90,
377
+ "multi - layer same - resolution compressed": 21,
378
+ "multimedia event detection": 126,
379
+ "multiple description": 165,
380
+ "multiple description coding": 53,
381
+ "multiple parallel instances": 38,
382
+ "mutual information": 94,
383
+ "nash equilibrium": 10,
384
+ "nearest neighbor": 128,
385
+ "neural network": 46,
386
+ "new persian": 182,
387
+ "node classification": 78,
388
+ "o - d demand estimation": 214,
389
+ "oblivious transfer": 188,
390
+ "optical character recognition": 206,
391
+ "optimal power flow": 211,
392
+ "optimal transport": 175,
393
+ "ordinary differential equation": 106,
394
+ "orthogonal least square": 161,
395
+ "parameter server": 171,
396
+ "parkinson 's disease": 181,
397
+ "part of speech": 27,
398
+ "particle swarm optimization": 101,
399
+ "permutation invariant training": 30,
400
+ "physical access": 155,
401
+ "physical machines": 172,
402
+ "point multiplication": 156,
403
+ "poisson point process": 80,
404
+ "portable document format": 170,
405
+ "positive pointwise mutual information": 189,
406
+ "power splitting": 180,
407
+ "power system operations": 209,
408
+ "prepositional phrase": 84,
409
+ "principal component analysis": 77,
410
+ "product - based neural network": 178,
411
+ "property graph": 113,
412
+ "quantile random forest": 217,
413
+ "question answering": 37,
414
+ "radio frequency": 58,
415
+ "random forest": 222,
416
+ "random neural networks": 122,
417
+ "random vaccination": 8,
418
+ "rank residual constraint": 187,
419
+ "rate - selective": 163,
420
+ "rate distortion function": 67,
421
+ "receiver operating characteristic": 41,
422
+ "recurrent convolution": 205,
423
+ "recurrent neural network": 35,
424
+ "recurrent weighted average": 36,
425
+ "reinforcement learning": 33,
426
+ "relation extraction": 137,
427
+ "relay station": 220,
428
+ "resource description framework": 25,
429
+ "reverse classification accuracy": 191,
430
+ "scalar multiplication": 107,
431
+ "secondary users": 213,
432
+ "secrecy outage probability": 96,
433
+ "secrecy rate": 0,
434
+ "self attention network": 168,
435
+ "semantic role labeling": 204,
436
+ "sensing application recently": 93,
437
+ "sequential monte carlo": 153,
438
+ "shortest dependency path": 20,
439
+ "simulated annealing": 109,
440
+ "singular value decomposition": 125,
441
+ "situation entity": 219,
442
+ "smart object": 79,
443
+ "social status": 115,
444
+ "socially assistive robots": 142,
445
+ "sound pressure level": 13,
446
+ "spectral angle distance": 23,
447
+ "statistical compressed sensing": 97,
448
+ "statistical machine translation": 184,
449
+ "stochastic block model": 140,
450
+ "strategic dependency": 197,
451
+ "strictly local": 198,
452
+ "strictly piecewise": 18,
453
+ "support vector machine": 14,
454
+ "synthetic aperture radar": 12,
455
+ "taint dependency sequences": 116,
456
+ "technical debt": 103,
457
+ "term frequency": 169,
458
+ "test case prioritization": 45,
459
+ "thompson sampling": 160,
460
+ "threshold algorithm": 42,
461
+ "transformation encoder": 158,
462
+ "transformation error": 136,
463
+ "triad significance profile": 190,
464
+ "universal dependencies": 95,
465
+ "user equipment": 121,
466
+ "virtual machine": 44
467
+ },
468
+ "layer_norm_eps": 1e-12,
469
+ "max_position_embeddings": 512,
470
+ "model_type": "bert",
471
+ "num_attention_heads": 12,
472
+ "num_hidden_layers": 12,
473
+ "pad_token_id": 0,
474
+ "position_embedding_type": "absolute",
475
+ "transformers_version": "4.34.1",
476
+ "type_vocab_size": 2,
477
+ "use_cache": true,
478
+ "vocab_size": 30522
479
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tf_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02120eb976c87ea82775449de53b1dc855f52acbe11c4dd93f09919f61ebdf25
3
+ size 438909076
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "BertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff