Training in progress epoch 0
Browse files- README.md +55 -0
- config.json +479 -0
- special_tokens_map.json +7 -0
- tf_model.h5 +3 -0
- tokenizer.json +0 -0
- tokenizer_config.json +55 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: bert-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_keras_callback
|
6 |
+
model-index:
|
7 |
+
- name: vladjr/bert-full-competicao
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information Keras had access to. You should
|
12 |
+
probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# vladjr/bert-full-competicao
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Train Loss: 3.1264
|
19 |
+
- Validation Loss: 1.3286
|
20 |
+
- Train Accuracy: 0.9194
|
21 |
+
- Epoch: 0
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2900, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
|
41 |
+
- training_precision: float32
|
42 |
+
|
43 |
+
### Training results
|
44 |
+
|
45 |
+
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|
46 |
+
|:----------:|:---------------:|:--------------:|:-----:|
|
47 |
+
| 3.1264 | 1.3286 | 0.9194 | 0 |
|
48 |
+
|
49 |
+
|
50 |
+
### Framework versions
|
51 |
+
|
52 |
+
- Transformers 4.34.1
|
53 |
+
- TensorFlow 2.14.0
|
54 |
+
- Datasets 2.14.6
|
55 |
+
- Tokenizers 0.14.1
|
config.json
ADDED
@@ -0,0 +1,479 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "bert-base-uncased",
|
3 |
+
"architectures": [
|
4 |
+
"BertForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "secrecy rate",
|
14 |
+
"1": "markov geographic model",
|
15 |
+
"2": "graph convolution networks",
|
16 |
+
"3": "convolutional neural network",
|
17 |
+
"4": "computed tomography",
|
18 |
+
"5": "betweenness centrality",
|
19 |
+
"6": "forward error correction",
|
20 |
+
"7": "fusion center",
|
21 |
+
"8": "random vaccination",
|
22 |
+
"9": "adversarial risk analysis",
|
23 |
+
"10": "nash equilibrium",
|
24 |
+
"11": "maximum likelihood",
|
25 |
+
"12": "synthetic aperture radar",
|
26 |
+
"13": "sound pressure level",
|
27 |
+
"14": "support vector machine",
|
28 |
+
"15": "high performance computing",
|
29 |
+
"16": "access point",
|
30 |
+
"17": "downlink",
|
31 |
+
"18": "strictly piecewise",
|
32 |
+
"19": "atomic , independent , declarative , and absolute",
|
33 |
+
"20": "shortest dependency path",
|
34 |
+
"21": "multi - layer same - resolution compressed",
|
35 |
+
"22": "marginal contribution",
|
36 |
+
"23": "spectral angle distance",
|
37 |
+
"24": "information retrieval",
|
38 |
+
"25": "resource description framework",
|
39 |
+
"26": "atomic function computation",
|
40 |
+
"27": "part of speech",
|
41 |
+
"28": "long term evolution",
|
42 |
+
"29": "mean squared error",
|
43 |
+
"30": "permutation invariant training",
|
44 |
+
"31": "minimum generation error",
|
45 |
+
"32": "alternating least squares",
|
46 |
+
"33": "reinforcement learning",
|
47 |
+
"34": "machine learning",
|
48 |
+
"35": "recurrent neural network",
|
49 |
+
"36": "recurrent weighted average",
|
50 |
+
"37": "question answering",
|
51 |
+
"38": "multiple parallel instances",
|
52 |
+
"39": "gaussian process",
|
53 |
+
"40": "base station",
|
54 |
+
"41": "receiver operating characteristic",
|
55 |
+
"42": "threshold algorithm",
|
56 |
+
"43": "click through rates",
|
57 |
+
"44": "virtual machine",
|
58 |
+
"45": "test case prioritization",
|
59 |
+
"46": "neural network",
|
60 |
+
"47": "belief propagation",
|
61 |
+
"48": "contention adaptions",
|
62 |
+
"49": "dynamic induction control",
|
63 |
+
"50": "information embedding cost",
|
64 |
+
"51": "lifelong metric learning",
|
65 |
+
"52": "linear programming",
|
66 |
+
"53": "multiple description coding",
|
67 |
+
"54": "latent dirichlet allocation",
|
68 |
+
"55": "collaborative filtering",
|
69 |
+
"56": "medium access control",
|
70 |
+
"57": "description logics",
|
71 |
+
"58": "radio frequency",
|
72 |
+
"59": "adaptive radix tree",
|
73 |
+
"60": "integer linear programming",
|
74 |
+
"61": "minimum risk training",
|
75 |
+
"62": "constructive interference",
|
76 |
+
"63": "line of sight",
|
77 |
+
"64": "deep belief network",
|
78 |
+
"65": "average precision",
|
79 |
+
"66": "dropped pronoun",
|
80 |
+
"67": "rate distortion function",
|
81 |
+
"68": "intellectual property",
|
82 |
+
"69": "geometric programming",
|
83 |
+
"70": "gaussian mixture model",
|
84 |
+
"71": "language model",
|
85 |
+
"72": "adversarially robust distillation",
|
86 |
+
"73": "controlled natural language",
|
87 |
+
"74": "federated learning",
|
88 |
+
"75": "augmented reality",
|
89 |
+
"76": "matrix factorization",
|
90 |
+
"77": "principal component analysis",
|
91 |
+
"78": "node classification",
|
92 |
+
"79": "smart object",
|
93 |
+
"80": "poisson point process",
|
94 |
+
"81": "attention network",
|
95 |
+
"82": "constrained least squares",
|
96 |
+
"83": "global positioning system",
|
97 |
+
"84": "prepositional phrase",
|
98 |
+
"85": "artificial neural network",
|
99 |
+
"86": "directed belief net",
|
100 |
+
"87": "false positive rate",
|
101 |
+
"88": "latent semantic analysis",
|
102 |
+
"89": "artificial intelligence",
|
103 |
+
"90": "model predictive control",
|
104 |
+
"91": "genetic algorithm",
|
105 |
+
"92": "access part'",
|
106 |
+
"93": "sensing application recently",
|
107 |
+
"94": "mutual information",
|
108 |
+
"95": "universal dependencies",
|
109 |
+
"96": "secrecy outage probability",
|
110 |
+
"97": "statistical compressed sensing",
|
111 |
+
"98": "information bottleneck",
|
112 |
+
"99": "ergodic sum capacity",
|
113 |
+
"100": "image signal processor",
|
114 |
+
"101": "particle swarm optimization",
|
115 |
+
"102": "differential rectifier",
|
116 |
+
"103": "technical debt",
|
117 |
+
"104": "deep learning",
|
118 |
+
"105": "hybrid monte carlo",
|
119 |
+
"106": "ordinary differential equation",
|
120 |
+
"107": "scalar multiplication",
|
121 |
+
"108": "inductive logic programming",
|
122 |
+
"109": "simulated annealing",
|
123 |
+
"110": "entity set expansion",
|
124 |
+
"111": "autism spectrum disorders",
|
125 |
+
"112": "artificial bee colony",
|
126 |
+
"113": "property graph",
|
127 |
+
"114": "centralized solution",
|
128 |
+
"115": "social status",
|
129 |
+
"116": "taint dependency sequences",
|
130 |
+
"117": "expectation maximization",
|
131 |
+
"118": "machine translation",
|
132 |
+
"119": "dynamic vision sensor",
|
133 |
+
"120": "automatic speech recognition",
|
134 |
+
"121": "user equipment",
|
135 |
+
"122": "random neural networks",
|
136 |
+
"123": "mean absolute error",
|
137 |
+
"124": "bayesian network",
|
138 |
+
"125": "singular value decomposition",
|
139 |
+
"126": "multimedia event detection",
|
140 |
+
"127": "median recovery error",
|
141 |
+
"128": "nearest neighbor",
|
142 |
+
"129": "friendly jamming",
|
143 |
+
"130": "formal methods",
|
144 |
+
"131": "intraclass correlation coefficient",
|
145 |
+
"132": "central cloud",
|
146 |
+
"133": "cumulative activation",
|
147 |
+
"134": "mitral valve",
|
148 |
+
"135": "discriminative correlation filter",
|
149 |
+
"136": "transformation error",
|
150 |
+
"137": "relation extraction",
|
151 |
+
"138": "linear discriminant analysis",
|
152 |
+
"139": "integrated circuit",
|
153 |
+
"140": "stochastic block model",
|
154 |
+
"141": "information extraction",
|
155 |
+
"142": "socially assistive robots",
|
156 |
+
"143": "hierarchical attention network",
|
157 |
+
"144": "deep reinforcement learning",
|
158 |
+
"145": "logistic regression",
|
159 |
+
"146": "message passing interface",
|
160 |
+
"147": "bug reports",
|
161 |
+
"148": "alzheimer 's disease",
|
162 |
+
"149": "data science and analytics",
|
163 |
+
"150": "automatic differentiation",
|
164 |
+
"151": "conditional random field",
|
165 |
+
"152": "false negatives",
|
166 |
+
"153": "sequential monte carlo",
|
167 |
+
"154": "basic question",
|
168 |
+
"155": "physical access",
|
169 |
+
"156": "point multiplication",
|
170 |
+
"157": "leicester scientific corpus",
|
171 |
+
"158": "transformation encoder",
|
172 |
+
"159": "deep convolutional neural network",
|
173 |
+
"160": "thompson sampling",
|
174 |
+
"161": "orthogonal least square",
|
175 |
+
"162": "acquaintance vaccination",
|
176 |
+
"163": "rate - selective",
|
177 |
+
"164": "dynamic assignment ratio",
|
178 |
+
"165": "multiple description",
|
179 |
+
"166": "million song dataset",
|
180 |
+
"167": "machine type communications",
|
181 |
+
"168": "self attention network",
|
182 |
+
"169": "term frequency",
|
183 |
+
"170": "portable document format",
|
184 |
+
"171": "parameter server",
|
185 |
+
"172": "physical machines",
|
186 |
+
"173": "exponential moving average",
|
187 |
+
"174": "matrix pair beamformer",
|
188 |
+
"175": "optimal transport",
|
189 |
+
"176": "finite element method",
|
190 |
+
"177": "differential evolution",
|
191 |
+
"178": "product - based neural network",
|
192 |
+
"179": "mean average conceptual similarity",
|
193 |
+
"180": "power splitting",
|
194 |
+
"181": "parkinson 's disease",
|
195 |
+
"182": "new persian",
|
196 |
+
"183": "artifact disentanglement network",
|
197 |
+
"184": "statistical machine translation",
|
198 |
+
"185": "manifold geometry matching",
|
199 |
+
"186": "batch normalization",
|
200 |
+
"187": "rank residual constraint",
|
201 |
+
"188": "oblivious transfer",
|
202 |
+
"189": "positive pointwise mutual information",
|
203 |
+
"190": "triad significance profile",
|
204 |
+
"191": "reverse classification accuracy",
|
205 |
+
"192": "fully connected",
|
206 |
+
"193": "corresponding arcs",
|
207 |
+
"194": "maximum a posteriori",
|
208 |
+
"195": "false positive",
|
209 |
+
"196": "certain natural language",
|
210 |
+
"197": "strategic dependency",
|
211 |
+
"198": "strictly local",
|
212 |
+
"199": "internet protocol",
|
213 |
+
"200": "foveal tilt effects",
|
214 |
+
"201": "dynamic cluster",
|
215 |
+
"202": "domain name system",
|
216 |
+
"203": "mean average precision",
|
217 |
+
"204": "semantic role labeling",
|
218 |
+
"205": "recurrent convolution",
|
219 |
+
"206": "optical character recognition",
|
220 |
+
"207": "charging current",
|
221 |
+
"208": "low resolution",
|
222 |
+
"209": "power system operations",
|
223 |
+
"210": "compressive sensing",
|
224 |
+
"211": "optimal power flow",
|
225 |
+
"212": "deep context prediction",
|
226 |
+
"213": "secondary users",
|
227 |
+
"214": "o - d demand estimation",
|
228 |
+
"215": "fully convolutional neural network",
|
229 |
+
"216": "maximal ratio combining",
|
230 |
+
"217": "quantile random forest",
|
231 |
+
"218": "adaptive threshold",
|
232 |
+
"219": "situation entity",
|
233 |
+
"220": "relay station",
|
234 |
+
"221": "discrete choice models",
|
235 |
+
"222": "random forest",
|
236 |
+
"223": "left ventricle",
|
237 |
+
"224": "artificial noise"
|
238 |
+
},
|
239 |
+
"initializer_range": 0.02,
|
240 |
+
"intermediate_size": 3072,
|
241 |
+
"label2id": {
|
242 |
+
"access part'": 92,
|
243 |
+
"access point": 16,
|
244 |
+
"acquaintance vaccination": 162,
|
245 |
+
"adaptive radix tree": 59,
|
246 |
+
"adaptive threshold": 218,
|
247 |
+
"adversarial risk analysis": 9,
|
248 |
+
"adversarially robust distillation": 72,
|
249 |
+
"alternating least squares": 32,
|
250 |
+
"alzheimer 's disease": 148,
|
251 |
+
"artifact disentanglement network": 183,
|
252 |
+
"artificial bee colony": 112,
|
253 |
+
"artificial intelligence": 89,
|
254 |
+
"artificial neural network": 85,
|
255 |
+
"artificial noise": 224,
|
256 |
+
"atomic , independent , declarative , and absolute": 19,
|
257 |
+
"atomic function computation": 26,
|
258 |
+
"attention network": 81,
|
259 |
+
"augmented reality": 75,
|
260 |
+
"autism spectrum disorders": 111,
|
261 |
+
"automatic differentiation": 150,
|
262 |
+
"automatic speech recognition": 120,
|
263 |
+
"average precision": 65,
|
264 |
+
"base station": 40,
|
265 |
+
"basic question": 154,
|
266 |
+
"batch normalization": 186,
|
267 |
+
"bayesian network": 124,
|
268 |
+
"belief propagation": 47,
|
269 |
+
"betweenness centrality": 5,
|
270 |
+
"bug reports": 147,
|
271 |
+
"central cloud": 132,
|
272 |
+
"centralized solution": 114,
|
273 |
+
"certain natural language": 196,
|
274 |
+
"charging current": 207,
|
275 |
+
"click through rates": 43,
|
276 |
+
"collaborative filtering": 55,
|
277 |
+
"compressive sensing": 210,
|
278 |
+
"computed tomography": 4,
|
279 |
+
"conditional random field": 151,
|
280 |
+
"constrained least squares": 82,
|
281 |
+
"constructive interference": 62,
|
282 |
+
"contention adaptions": 48,
|
283 |
+
"controlled natural language": 73,
|
284 |
+
"convolutional neural network": 3,
|
285 |
+
"corresponding arcs": 193,
|
286 |
+
"cumulative activation": 133,
|
287 |
+
"data science and analytics": 149,
|
288 |
+
"deep belief network": 64,
|
289 |
+
"deep context prediction": 212,
|
290 |
+
"deep convolutional neural network": 159,
|
291 |
+
"deep learning": 104,
|
292 |
+
"deep reinforcement learning": 144,
|
293 |
+
"description logics": 57,
|
294 |
+
"differential evolution": 177,
|
295 |
+
"differential rectifier": 102,
|
296 |
+
"directed belief net": 86,
|
297 |
+
"discrete choice models": 221,
|
298 |
+
"discriminative correlation filter": 135,
|
299 |
+
"domain name system": 202,
|
300 |
+
"downlink": 17,
|
301 |
+
"dropped pronoun": 66,
|
302 |
+
"dynamic assignment ratio": 164,
|
303 |
+
"dynamic cluster": 201,
|
304 |
+
"dynamic induction control": 49,
|
305 |
+
"dynamic vision sensor": 119,
|
306 |
+
"entity set expansion": 110,
|
307 |
+
"ergodic sum capacity": 99,
|
308 |
+
"expectation maximization": 117,
|
309 |
+
"exponential moving average": 173,
|
310 |
+
"false negatives": 152,
|
311 |
+
"false positive": 195,
|
312 |
+
"false positive rate": 87,
|
313 |
+
"federated learning": 74,
|
314 |
+
"finite element method": 176,
|
315 |
+
"formal methods": 130,
|
316 |
+
"forward error correction": 6,
|
317 |
+
"foveal tilt effects": 200,
|
318 |
+
"friendly jamming": 129,
|
319 |
+
"fully connected": 192,
|
320 |
+
"fully convolutional neural network": 215,
|
321 |
+
"fusion center": 7,
|
322 |
+
"gaussian mixture model": 70,
|
323 |
+
"gaussian process": 39,
|
324 |
+
"genetic algorithm": 91,
|
325 |
+
"geometric programming": 69,
|
326 |
+
"global positioning system": 83,
|
327 |
+
"graph convolution networks": 2,
|
328 |
+
"hierarchical attention network": 143,
|
329 |
+
"high performance computing": 15,
|
330 |
+
"hybrid monte carlo": 105,
|
331 |
+
"image signal processor": 100,
|
332 |
+
"inductive logic programming": 108,
|
333 |
+
"information bottleneck": 98,
|
334 |
+
"information embedding cost": 50,
|
335 |
+
"information extraction": 141,
|
336 |
+
"information retrieval": 24,
|
337 |
+
"integer linear programming": 60,
|
338 |
+
"integrated circuit": 139,
|
339 |
+
"intellectual property": 68,
|
340 |
+
"internet protocol": 199,
|
341 |
+
"intraclass correlation coefficient": 131,
|
342 |
+
"language model": 71,
|
343 |
+
"latent dirichlet allocation": 54,
|
344 |
+
"latent semantic analysis": 88,
|
345 |
+
"left ventricle": 223,
|
346 |
+
"leicester scientific corpus": 157,
|
347 |
+
"lifelong metric learning": 51,
|
348 |
+
"line of sight": 63,
|
349 |
+
"linear discriminant analysis": 138,
|
350 |
+
"linear programming": 52,
|
351 |
+
"logistic regression": 145,
|
352 |
+
"long term evolution": 28,
|
353 |
+
"low resolution": 208,
|
354 |
+
"machine learning": 34,
|
355 |
+
"machine translation": 118,
|
356 |
+
"machine type communications": 167,
|
357 |
+
"manifold geometry matching": 185,
|
358 |
+
"marginal contribution": 22,
|
359 |
+
"markov geographic model": 1,
|
360 |
+
"matrix factorization": 76,
|
361 |
+
"matrix pair beamformer": 174,
|
362 |
+
"maximal ratio combining": 216,
|
363 |
+
"maximum a posteriori": 194,
|
364 |
+
"maximum likelihood": 11,
|
365 |
+
"mean absolute error": 123,
|
366 |
+
"mean average conceptual similarity": 179,
|
367 |
+
"mean average precision": 203,
|
368 |
+
"mean squared error": 29,
|
369 |
+
"median recovery error": 127,
|
370 |
+
"medium access control": 56,
|
371 |
+
"message passing interface": 146,
|
372 |
+
"million song dataset": 166,
|
373 |
+
"minimum generation error": 31,
|
374 |
+
"minimum risk training": 61,
|
375 |
+
"mitral valve": 134,
|
376 |
+
"model predictive control": 90,
|
377 |
+
"multi - layer same - resolution compressed": 21,
|
378 |
+
"multimedia event detection": 126,
|
379 |
+
"multiple description": 165,
|
380 |
+
"multiple description coding": 53,
|
381 |
+
"multiple parallel instances": 38,
|
382 |
+
"mutual information": 94,
|
383 |
+
"nash equilibrium": 10,
|
384 |
+
"nearest neighbor": 128,
|
385 |
+
"neural network": 46,
|
386 |
+
"new persian": 182,
|
387 |
+
"node classification": 78,
|
388 |
+
"o - d demand estimation": 214,
|
389 |
+
"oblivious transfer": 188,
|
390 |
+
"optical character recognition": 206,
|
391 |
+
"optimal power flow": 211,
|
392 |
+
"optimal transport": 175,
|
393 |
+
"ordinary differential equation": 106,
|
394 |
+
"orthogonal least square": 161,
|
395 |
+
"parameter server": 171,
|
396 |
+
"parkinson 's disease": 181,
|
397 |
+
"part of speech": 27,
|
398 |
+
"particle swarm optimization": 101,
|
399 |
+
"permutation invariant training": 30,
|
400 |
+
"physical access": 155,
|
401 |
+
"physical machines": 172,
|
402 |
+
"point multiplication": 156,
|
403 |
+
"poisson point process": 80,
|
404 |
+
"portable document format": 170,
|
405 |
+
"positive pointwise mutual information": 189,
|
406 |
+
"power splitting": 180,
|
407 |
+
"power system operations": 209,
|
408 |
+
"prepositional phrase": 84,
|
409 |
+
"principal component analysis": 77,
|
410 |
+
"product - based neural network": 178,
|
411 |
+
"property graph": 113,
|
412 |
+
"quantile random forest": 217,
|
413 |
+
"question answering": 37,
|
414 |
+
"radio frequency": 58,
|
415 |
+
"random forest": 222,
|
416 |
+
"random neural networks": 122,
|
417 |
+
"random vaccination": 8,
|
418 |
+
"rank residual constraint": 187,
|
419 |
+
"rate - selective": 163,
|
420 |
+
"rate distortion function": 67,
|
421 |
+
"receiver operating characteristic": 41,
|
422 |
+
"recurrent convolution": 205,
|
423 |
+
"recurrent neural network": 35,
|
424 |
+
"recurrent weighted average": 36,
|
425 |
+
"reinforcement learning": 33,
|
426 |
+
"relation extraction": 137,
|
427 |
+
"relay station": 220,
|
428 |
+
"resource description framework": 25,
|
429 |
+
"reverse classification accuracy": 191,
|
430 |
+
"scalar multiplication": 107,
|
431 |
+
"secondary users": 213,
|
432 |
+
"secrecy outage probability": 96,
|
433 |
+
"secrecy rate": 0,
|
434 |
+
"self attention network": 168,
|
435 |
+
"semantic role labeling": 204,
|
436 |
+
"sensing application recently": 93,
|
437 |
+
"sequential monte carlo": 153,
|
438 |
+
"shortest dependency path": 20,
|
439 |
+
"simulated annealing": 109,
|
440 |
+
"singular value decomposition": 125,
|
441 |
+
"situation entity": 219,
|
442 |
+
"smart object": 79,
|
443 |
+
"social status": 115,
|
444 |
+
"socially assistive robots": 142,
|
445 |
+
"sound pressure level": 13,
|
446 |
+
"spectral angle distance": 23,
|
447 |
+
"statistical compressed sensing": 97,
|
448 |
+
"statistical machine translation": 184,
|
449 |
+
"stochastic block model": 140,
|
450 |
+
"strategic dependency": 197,
|
451 |
+
"strictly local": 198,
|
452 |
+
"strictly piecewise": 18,
|
453 |
+
"support vector machine": 14,
|
454 |
+
"synthetic aperture radar": 12,
|
455 |
+
"taint dependency sequences": 116,
|
456 |
+
"technical debt": 103,
|
457 |
+
"term frequency": 169,
|
458 |
+
"test case prioritization": 45,
|
459 |
+
"thompson sampling": 160,
|
460 |
+
"threshold algorithm": 42,
|
461 |
+
"transformation encoder": 158,
|
462 |
+
"transformation error": 136,
|
463 |
+
"triad significance profile": 190,
|
464 |
+
"universal dependencies": 95,
|
465 |
+
"user equipment": 121,
|
466 |
+
"virtual machine": 44
|
467 |
+
},
|
468 |
+
"layer_norm_eps": 1e-12,
|
469 |
+
"max_position_embeddings": 512,
|
470 |
+
"model_type": "bert",
|
471 |
+
"num_attention_heads": 12,
|
472 |
+
"num_hidden_layers": 12,
|
473 |
+
"pad_token_id": 0,
|
474 |
+
"position_embedding_type": "absolute",
|
475 |
+
"transformers_version": "4.34.1",
|
476 |
+
"type_vocab_size": 2,
|
477 |
+
"use_cache": true,
|
478 |
+
"vocab_size": 30522
|
479 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tf_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:02120eb976c87ea82775449de53b1dc855f52acbe11c4dd93f09919f61ebdf25
|
3 |
+
size 438909076
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"mask_token": "[MASK]",
|
48 |
+
"model_max_length": 512,
|
49 |
+
"pad_token": "[PAD]",
|
50 |
+
"sep_token": "[SEP]",
|
51 |
+
"strip_accents": null,
|
52 |
+
"tokenize_chinese_chars": true,
|
53 |
+
"tokenizer_class": "BertTokenizer",
|
54 |
+
"unk_token": "[UNK]"
|
55 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|