File size: 2,564 Bytes
a30c677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c4b204
 
 
 
 
 
 
a30c677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a42e58
a30c677
 
 
 
 
 
0a42e58
18d5dcb
1c4b204
a30c677
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
license: apache-2.0
base_model: bert-base-multilingual-cased
tags:
- generated_from_keras_callback
model-index:
- name: vnktrmnb/MBERT_FT-TyDiQA_S59
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# vnktrmnb/MBERT_FT-TyDiQA_S59

This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.6175
- Train End Logits Accuracy: 0.8417
- Train Start Logits Accuracy: 0.8693
- Validation Loss: 0.4662
- Validation End Logits Accuracy: 0.8789
- Validation Start Logits Accuracy: 0.9162
- Epoch: 2

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2412, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch |
|:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:|
| 1.4412     | 0.6715                    | 0.7002                      | 0.4875          | 0.8570                         | 0.8943                           | 0     |
| 0.8493     | 0.7898                    | 0.8229                      | 0.4547          | 0.8686                         | 0.9137                           | 1     |
| 0.6175     | 0.8417                    | 0.8693                      | 0.4662          | 0.8789                         | 0.9162                           | 2     |


### Framework versions

- Transformers 4.32.1
- TensorFlow 2.12.0
- Datasets 2.14.4
- Tokenizers 0.13.3