--- license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_keras_callback model-index: - name: vnktrmnb/bert-base-multilingual-cased-FT-TyDiQA-GoldP_Te results: [] --- # vnktrmnb/bert-base-multilingual-cased-FT-TyDiQA-GoldP_Te This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4459 - Train End Logits Accuracy: 0.8633 - Train Start Logits Accuracy: 0.8986 - Validation Loss: 0.4616 - Validation End Logits Accuracy: 0.8570 - Validation Start Logits Accuracy: 0.9072 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1359, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.4434 | 0.8660 | 0.9037 | 0.4616 | 0.8570 | 0.9072 | 0 | | 0.4507 | 0.8620 | 0.9018 | 0.4616 | 0.8570 | 0.9072 | 1 | | 0.4459 | 0.8633 | 0.8986 | 0.4616 | 0.8570 | 0.9072 | 2 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3