File size: 2,355 Bytes
fcccbd3
 
 
 
 
 
012e0e6
fcccbd3
 
 
73dc743
fcccbd3
 
 
 
 
 
 
 
 
 
 
 
 
07cdb5c
012e0e6
fcccbd3
 
 
 
 
 
 
 
 
07cdb5c
 
fcccbd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
012e0e6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
license: apache-2.0
base_model: facebook/convnextv2-base-22k-384
tags:
- generated_from_trainer
datasets:
- vuongnhathien/30VNFoods
metrics:
- accuracy
model-index:
- name: ConvnextV2-Base-30VNFoods
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: validation
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9511904761904761
pipeline_tag: image-classification
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# convnext-base-wd-1e-8-3e-5-erasing

This model is a fine-tuned version of [facebook/convnextv2-base-22k-384](https://huggingface.co/facebook/convnextv2-base-22k-384) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2152
- Accuracy: 0.9512

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.6062        | 1.0   | 1099  | 0.3677          | 0.8930   |
| 0.4975        | 2.0   | 2198  | 0.2791          | 0.9268   |
| 0.3777        | 3.0   | 3297  | 0.2496          | 0.9356   |
| 0.3135        | 4.0   | 4396  | 0.2297          | 0.9396   |
| 0.3022        | 5.0   | 5495  | 0.2420          | 0.9400   |
| 0.2481        | 6.0   | 6594  | 0.2327          | 0.9459   |
| 0.2439        | 7.0   | 7693  | 0.2328          | 0.9439   |
| 0.1849        | 8.0   | 8792  | 0.2235          | 0.9483   |
| 0.1716        | 9.0   | 9891  | 0.2224          | 0.9507   |
| 0.1731        | 10.0  | 10990 | 0.2211          | 0.9507   |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2