File size: 2,565 Bytes
0a26224 c779ef0 0a26224 c779ef0 0a26224 c779ef0 0a26224 c779ef0 0a26224 c779ef0 0a26224 c779ef0 0a26224 9c3f5d8 0a26224 c779ef0 0a26224 c779ef0 0a26224 c779ef0 0a26224 c779ef0 0a26224 c779ef0 0a26224 c779ef0 0a26224 c779ef0 0a26224 c779ef0 0a26224 c779ef0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
library_name: diffusers
license: creativeml-openrail-m
datasets:
- vwu142/Pokemon-Card-Plus-Pokemon-Actual-Image-And-Captions-13000
language:
- en
---
# Fine-Tuned Pokemon Generator Model Card
This model was fined-tuned with a Pokemon and Pokemon Card Image dataset with Stable Diffusion v2-1 as the Base Model
Most of the documentation would still be the same as the Base Model's repo, but with some of the fine-tuning done
Base Model Repo: https://huggingface.co/stabilityai/stable-diffusion-2-1
Dataset: https://huggingface.co/datasets/vwu142/Pokemon-Card-Plus-Pokemon-Actual-Image-And-Captions-13000
# Stable Diffusion v2-1 text2image fine-tuning - vwu142/fine-tuned-pokemon-and-pokemon-card-generator-13000
The model was fine-tuned on the vwu142/Pokemon-Card-Plus-Pokemon-Actual-Image-And-Captions-13000 dataset. You can find some example images in the following.
![img_0](./image_0.png)
![img_1](./image_1.png)
![img_2](./image_2.png)
## How to Get Started with the Model
```python
# Building the pipeline with the Fined-tuned model from Hugging Face
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained("vwu142/fine-tuned-pokemon-and-pokemon-card-generator-13000")
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
pipeline = pipeline.to("cuda")
# Image generation
prompt = "A Pokemon Card of the format tag team,with pokemon of type dragon and ghost with the title Gratina in the Tag Team form from Sun & Moon with an Electric type Pikachu as the buddy of the Tag Team"
images = pipeline(prompt).images
images
```
## Training Details
### Training Procedure
The weights were trained on the Free GPU provided in Google Collab.
The data it was trained on comes from this dataset:
https://huggingface.co/datasets/vwu142/Pokemon-Card-Plus-Pokemon-Actual-Image-And-Captions-13000
It has images of pokemon cards and pokemon with various descriptions of the image.
#### Training Hyperparameters
```python
!accelerate launch diffusers/examples/text_to_image/train_text_to_image.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--dataset_name=$dataset_name --caption_column="caption"\
--use_ema \
--use_8bit_adam \
--resolution=512 --center_crop --random_flip \
--train_batch_size=1 \
--gradient_accumulation_steps=8 \
--gradient_checkpointing \
--mixed_precision="fp16" \
--max_train_steps=$max_training_epochs \
--learning_rate=1e-05 \
--max_grad_norm=1 \
--lr_scheduler="constant" --lr_warmup_steps=0 \
--output_dir="pokemon-card-model"
``` |