File size: 7,261 Bytes
a84d215 891fae3 a84d215 a58436a a84d215 a58436a a84d215 a58436a 891fae3 a58436a 891fae3 a58436a 891fae3 a58436a 891fae3 a58436a 891fae3 a58436a 891fae3 a58436a 891fae3 a58436a 891fae3 a58436a 891fae3 a58436a 891fae3 a58436a 891fae3 a58436a 891fae3 a58436a 891fae3 a58436a 891fae3 a58436a 891fae3 a58436a 891fae3 a58436a 891fae3 a58436a 891fae3 a58436a 891fae3 a58436a 891fae3 a58436a 891fae3 a58436a 891fae3 a58436a 891fae3 a84d215 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
---
language: id
license: mit
tags:
- indonesian-roberta-base-indonli
datasets:
- indonli
widget:
- text: Andi tersenyum karena mendapat hasil baik. </s></s> Andi sedih.
model-index:
- name: w11wo/indonesian-roberta-base-indonli
results:
- task:
type: natural-language-inference
name: Natural Language Inference
dataset:
name: indonli
type: indonli
config: indonli
split: test_expert
metrics:
- type: accuracy
value: 0.6072386058981233
name: Accuracy
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzY4NDkwNTdlYjI4MzY3ZTk3NmZjYjA1MjE2YWQ5MjJjMGM3NTc1NWVjODQzNTc1ZTYyZWVmYmY5NTI3NWY1ZSIsInZlcnNpb24iOjF9.Aeo_Id90j2JtyApv3LvJHkQtHz-9wO4SNvTdb8O_pp0KFQGfWXnkgX2t2hafIUxSKmZbETIte-FaPbZ9AGZSDA
- type: precision
value: 0.6304330508019023
name: Precision Macro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2I3Y2RkNjU0NzlkYmJiNWYyZjZhNzIzZGE5ODU4NzYxYmQ0NTYxYzZkM2JiNTQwZTdkMmYxOTRmMDlmOGFkMiIsInZlcnNpb24iOjF9.iEt7Mq6a3TubFQfdC3OAxAiZDXp0bPGhN9JPzSfKl89_dxnKzDp0IrVzkt1HNLHR_S22Q75Tevqh3_G8Pp05Dg
- type: precision
value: 0.6072386058981233
name: Precision Micro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmI4ZmEwOTY0NTViNTM1ZjcwY2E2ODRmNGJiMTg2ZDJmZTgyNGUxM2UwNjZjYzVmYTcxZGY4OGY3OTI4MzcyMSIsInZlcnNpb24iOjF9.Jn1OPD1ZxkblCqKT1CfeUYOt5Xb6CL6C2ZENLmvfYNzh-p0oHcIBgapfbCHc89oMSR-FhjQk_ME8f8A3eyy6CA
- type: precision
value: 0.6320495884503851
name: Precision Weighted
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYWU1NmI5MTk3ODY4Y2M5ZjYyNzMwZjRlZTAzNjFmNmUxNzgxYjVhODNjZDAwOTQyNDBlZDJkNDYyNzRlYzBmOSIsInZlcnNpb24iOjF9.ItCi8SouqOtM3P7c0KN5ifRpGOr1090aqo4zX4aVSlVOTq0iQj9_c3z0B_UAzFcr0qW7ObnvuiD8D5d-9EzkBg
- type: recall
value: 0.6127303344145852
name: Recall Macro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTZmMGEzMGZjYTI2MzA0OGQ1Nzk5ZDRmNDNhMTRhOGMyM2I4Zjc2NzMzNmM2NjQ0YzVjZDY1Mzk1ZWI5Zjg2NiIsInZlcnNpb24iOjF9.fWCCNatB50nCptCbXopRjwxbWic6BvWIG6frUo_iXJVFXsi3Q_ik91_70fLgZc9NfhIpewpNoe4ETn0Gmps4Cw
- type: recall
value: 0.6072386058981233
name: Recall Micro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGMwOWVmOWU4YzM2ZjMyY2NjNjljMDdjZTZmMjU5MjRiNDU0NmVhYWEzZmQ5MzUzMmRhMjdmZjhkNDU4ZTM2ZCIsInZlcnNpb24iOjF9.Sy2c29OhxT-x4UBSr9G7rfwtyqzYOX4KNRe2blonfOdKrqSfSEORY01Y67WweDiKdRvbECzI-DemJUXVtx-QCg
- type: recall
value: 0.6072386058981233
name: Recall Weighted
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODgwODAwMDNkZWJlMzYyYmQwYzNmMGZiMzhjZjVjNGYyMTg3OWVjNjZmMzFhMDczNGEyMDAyODkwZTZhZWM4NSIsInZlcnNpb24iOjF9.8IxdbjDQHzcNW71RAMtKHzlviweLTQvYVQ4JlrqoZsV-8gyzxpyYOmDjUm3n6uQNfRLRpyvsT-E8ysLHPyMqDg
- type: f1
value: 0.6010566054103847
name: F1 Macro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZmMwMjg2YjZmYzMzYzlmNTk3OGIyMDc5NGUxNTFlNmNkNmU3MzU2ZWMyZjY0OGFhYmY5YTUyNDkxNjJiODIwNSIsInZlcnNpb24iOjF9.r1ylajrOC-Qu4QNdNnXzisjGlczTF_9tYpNEr8LYdTtdmJtRjNtNmElINneuaWX7XGN9TExdzmg7OWTwutjsAg
- type: f1
value: 0.6072386058981233
name: F1 Micro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDdhMGU1NDNjMzgxN2NjNWYzNTk5OWY5OTZhZWRjOGZkNjI4ZDA1YjI5ZWYxOWNmNDc4NmVhNjllMjUyMTFkMSIsInZlcnNpb24iOjF9.5G1km-a2_ssO_b3WTD8Ools29e6h8X8rjpClFN5Q_I4ADbPxKI2QbCfd5vl89CMHclignQ1_H6vqYbdTL9usDQ
- type: f1
value: 0.5995456855334425
name: F1 Weighted
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjYyNTZjOTUzNmMxOTY3MzQzNjMxZGNhYTY3NTQ4Mjg3NWRlMjc2NmY1NjMxOWY0NTFiODlhZjA3ZTEzNGQ3MSIsInZlcnNpb24iOjF9.3iTI9IieFa3WJFr7ovDvO24IPScGB7WQk3Pw_Qxh32zKx5QyOwmZf_p2bgbEG6hBeCkR0KaMDvIiZXnbW6DBDQ
- type: loss
value: 1.157181739807129
name: loss
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZmIxNTQyYWRkMjgxMTZkN2JhZTg5NDFiMDRlZGEzOGE5ZDIwYTE5NTU4YmU0NDUxOTE1MDQwMzFlMjQ5MDQ2YSIsInZlcnNpb24iOjF9.M-U6Dp-I-DEXZ3qSGLxYrCdQjgXi6DotHDgz1acjWnHIZWKPApy-n2194FZik1Tpv2AcJVe45tDRLxNSW3zVBg
---
## Indonesian RoBERTa Base IndoNLI
Indonesian RoBERTa Base IndoNLI is a natural language inference (NLI) model based on the [RoBERTa](https://arxiv.org/abs/1907.11692) model. The model was originally the pre-trained [Indonesian RoBERTa Base](https://hf.co/flax-community/indonesian-roberta-base) model, which is then fine-tuned on [`IndoNLI`](https://github.com/ir-nlp-csui/indonli)'s dataset consisting of Indonesian Wikipedia, news, and Web articles [1].
After training, the model achieved an evaluation/dev accuracy of 77.06%. On the benchmark `test_lay` subset, the model achieved an accuracy of 74.24% and on the benchmark `test_expert` subset, the model achieved an accuracy of 61.66%.
Hugging Face's `Trainer` class from the [Transformers](https://huggingface.co/transformers) library was used to train the model. PyTorch was used as the backend framework during training, but the model remains compatible with other frameworks nonetheless.
## Model
| Model | #params | Arch. | Training/Validation data (text) |
| --------------------------------- | ------- | ------------ | ------------------------------- |
| `indonesian-roberta-base-indonli` | 124M | RoBERTa Base | `IndoNLI` |
## Evaluation Results
The model was trained for 5 epochs, with a batch size of 16, a learning rate of 2e-5, a weight decay of 0.1, and a warmup ratio of 0.2, with linear annealing to 0. The best model was loaded at the end.
| Epoch | Training Loss | Validation Loss | Accuracy |
| ----- | ------------- | --------------- | -------- |
| 1 | 0.989200 | 0.691663 | 0.731452 |
| 2 | 0.673000 | 0.621913 | 0.766045 |
| 3 | 0.449900 | 0.662543 | 0.770596 |
| 4 | 0.293600 | 0.777059 | 0.768320 |
| 5 | 0.194200 | 0.948068 | 0.764224 |
## How to Use
### As NLI Classifier
```python
from transformers import pipeline
pretrained_name = "w11wo/indonesian-roberta-base-indonli"
nlp = pipeline(
"sentiment-analysis",
model=pretrained_name,
tokenizer=pretrained_name
)
nlp("Andi tersenyum karena mendapat hasil baik. </s></s> Andi sedih.")
```
## Disclaimer
Do consider the biases which come from both the pre-trained RoBERTa model and the `IndoNLI` dataset that may be carried over into the results of this model.
## References
[1] Mahendra, R., Aji, A. F., Louvan, S., Rahman, F., & Vania, C. (2021, November). [IndoNLI: A Natural Language Inference Dataset for Indonesian](https://arxiv.org/abs/2110.14566). _Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing_. Association for Computational Linguistics.
## Author
Indonesian RoBERTa Base IndoNLI was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Google Colaboratory using their free GPU access.
|