--- language: id license: mit tags: - indonesian-roberta-base-indonli datasets: - indonli widget: - text: Andi tersenyum karena mendapat hasil baik. Andi sedih. model-index: - name: w11wo/indonesian-roberta-base-indonli results: - task: type: natural-language-inference name: Natural Language Inference dataset: name: indonli type: indonli config: indonli split: test_expert metrics: - type: accuracy value: 0.6072386058981233 name: Accuracy verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzY4NDkwNTdlYjI4MzY3ZTk3NmZjYjA1MjE2YWQ5MjJjMGM3NTc1NWVjODQzNTc1ZTYyZWVmYmY5NTI3NWY1ZSIsInZlcnNpb24iOjF9.Aeo_Id90j2JtyApv3LvJHkQtHz-9wO4SNvTdb8O_pp0KFQGfWXnkgX2t2hafIUxSKmZbETIte-FaPbZ9AGZSDA - type: precision value: 0.6304330508019023 name: Precision Macro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2I3Y2RkNjU0NzlkYmJiNWYyZjZhNzIzZGE5ODU4NzYxYmQ0NTYxYzZkM2JiNTQwZTdkMmYxOTRmMDlmOGFkMiIsInZlcnNpb24iOjF9.iEt7Mq6a3TubFQfdC3OAxAiZDXp0bPGhN9JPzSfKl89_dxnKzDp0IrVzkt1HNLHR_S22Q75Tevqh3_G8Pp05Dg - type: precision value: 0.6072386058981233 name: Precision Micro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmI4ZmEwOTY0NTViNTM1ZjcwY2E2ODRmNGJiMTg2ZDJmZTgyNGUxM2UwNjZjYzVmYTcxZGY4OGY3OTI4MzcyMSIsInZlcnNpb24iOjF9.Jn1OPD1ZxkblCqKT1CfeUYOt5Xb6CL6C2ZENLmvfYNzh-p0oHcIBgapfbCHc89oMSR-FhjQk_ME8f8A3eyy6CA - type: precision value: 0.6320495884503851 name: Precision Weighted verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYWU1NmI5MTk3ODY4Y2M5ZjYyNzMwZjRlZTAzNjFmNmUxNzgxYjVhODNjZDAwOTQyNDBlZDJkNDYyNzRlYzBmOSIsInZlcnNpb24iOjF9.ItCi8SouqOtM3P7c0KN5ifRpGOr1090aqo4zX4aVSlVOTq0iQj9_c3z0B_UAzFcr0qW7ObnvuiD8D5d-9EzkBg - type: recall value: 0.6127303344145852 name: Recall Macro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTZmMGEzMGZjYTI2MzA0OGQ1Nzk5ZDRmNDNhMTRhOGMyM2I4Zjc2NzMzNmM2NjQ0YzVjZDY1Mzk1ZWI5Zjg2NiIsInZlcnNpb24iOjF9.fWCCNatB50nCptCbXopRjwxbWic6BvWIG6frUo_iXJVFXsi3Q_ik91_70fLgZc9NfhIpewpNoe4ETn0Gmps4Cw - type: recall value: 0.6072386058981233 name: Recall Micro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGMwOWVmOWU4YzM2ZjMyY2NjNjljMDdjZTZmMjU5MjRiNDU0NmVhYWEzZmQ5MzUzMmRhMjdmZjhkNDU4ZTM2ZCIsInZlcnNpb24iOjF9.Sy2c29OhxT-x4UBSr9G7rfwtyqzYOX4KNRe2blonfOdKrqSfSEORY01Y67WweDiKdRvbECzI-DemJUXVtx-QCg - type: recall value: 0.6072386058981233 name: Recall Weighted verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODgwODAwMDNkZWJlMzYyYmQwYzNmMGZiMzhjZjVjNGYyMTg3OWVjNjZmMzFhMDczNGEyMDAyODkwZTZhZWM4NSIsInZlcnNpb24iOjF9.8IxdbjDQHzcNW71RAMtKHzlviweLTQvYVQ4JlrqoZsV-8gyzxpyYOmDjUm3n6uQNfRLRpyvsT-E8ysLHPyMqDg - type: f1 value: 0.6010566054103847 name: F1 Macro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZmMwMjg2YjZmYzMzYzlmNTk3OGIyMDc5NGUxNTFlNmNkNmU3MzU2ZWMyZjY0OGFhYmY5YTUyNDkxNjJiODIwNSIsInZlcnNpb24iOjF9.r1ylajrOC-Qu4QNdNnXzisjGlczTF_9tYpNEr8LYdTtdmJtRjNtNmElINneuaWX7XGN9TExdzmg7OWTwutjsAg - type: f1 value: 0.6072386058981233 name: F1 Micro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDdhMGU1NDNjMzgxN2NjNWYzNTk5OWY5OTZhZWRjOGZkNjI4ZDA1YjI5ZWYxOWNmNDc4NmVhNjllMjUyMTFkMSIsInZlcnNpb24iOjF9.5G1km-a2_ssO_b3WTD8Ools29e6h8X8rjpClFN5Q_I4ADbPxKI2QbCfd5vl89CMHclignQ1_H6vqYbdTL9usDQ - type: f1 value: 0.5995456855334425 name: F1 Weighted verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjYyNTZjOTUzNmMxOTY3MzQzNjMxZGNhYTY3NTQ4Mjg3NWRlMjc2NmY1NjMxOWY0NTFiODlhZjA3ZTEzNGQ3MSIsInZlcnNpb24iOjF9.3iTI9IieFa3WJFr7ovDvO24IPScGB7WQk3Pw_Qxh32zKx5QyOwmZf_p2bgbEG6hBeCkR0KaMDvIiZXnbW6DBDQ - type: loss value: 1.157181739807129 name: loss verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZmIxNTQyYWRkMjgxMTZkN2JhZTg5NDFiMDRlZGEzOGE5ZDIwYTE5NTU4YmU0NDUxOTE1MDQwMzFlMjQ5MDQ2YSIsInZlcnNpb24iOjF9.M-U6Dp-I-DEXZ3qSGLxYrCdQjgXi6DotHDgz1acjWnHIZWKPApy-n2194FZik1Tpv2AcJVe45tDRLxNSW3zVBg --- ## Indonesian RoBERTa Base IndoNLI Indonesian RoBERTa Base IndoNLI is a natural language inference (NLI) model based on the [RoBERTa](https://arxiv.org/abs/1907.11692) model. The model was originally the pre-trained [Indonesian RoBERTa Base](https://hf.co/flax-community/indonesian-roberta-base) model, which is then fine-tuned on [`IndoNLI`](https://github.com/ir-nlp-csui/indonli)'s dataset consisting of Indonesian Wikipedia, news, and Web articles [1]. After training, the model achieved an evaluation/dev accuracy of 77.06%. On the benchmark `test_lay` subset, the model achieved an accuracy of 74.24% and on the benchmark `test_expert` subset, the model achieved an accuracy of 61.66%. Hugging Face's `Trainer` class from the [Transformers](https://huggingface.co/transformers) library was used to train the model. PyTorch was used as the backend framework during training, but the model remains compatible with other frameworks nonetheless. ## Model | Model | #params | Arch. | Training/Validation data (text) | | --------------------------------- | ------- | ------------ | ------------------------------- | | `indonesian-roberta-base-indonli` | 124M | RoBERTa Base | `IndoNLI` | ## Evaluation Results The model was trained for 5 epochs, with a batch size of 16, a learning rate of 2e-5, a weight decay of 0.1, and a warmup ratio of 0.2, with linear annealing to 0. The best model was loaded at the end. | Epoch | Training Loss | Validation Loss | Accuracy | | ----- | ------------- | --------------- | -------- | | 1 | 0.989200 | 0.691663 | 0.731452 | | 2 | 0.673000 | 0.621913 | 0.766045 | | 3 | 0.449900 | 0.662543 | 0.770596 | | 4 | 0.293600 | 0.777059 | 0.768320 | | 5 | 0.194200 | 0.948068 | 0.764224 | ## How to Use ### As NLI Classifier ```python from transformers import pipeline pretrained_name = "w11wo/indonesian-roberta-base-indonli" nlp = pipeline( "sentiment-analysis", model=pretrained_name, tokenizer=pretrained_name ) nlp("Andi tersenyum karena mendapat hasil baik. Andi sedih.") ``` ## Disclaimer Do consider the biases which come from both the pre-trained RoBERTa model and the `IndoNLI` dataset that may be carried over into the results of this model. ## References [1] Mahendra, R., Aji, A. F., Louvan, S., Rahman, F., & Vania, C. (2021, November). [IndoNLI: A Natural Language Inference Dataset for Indonesian](https://arxiv.org/abs/2110.14566). _Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing_. Association for Computational Linguistics. ## Author Indonesian RoBERTa Base IndoNLI was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Google Colaboratory using their free GPU access.