Upload folder using huggingface_hub
Browse files- beagle.json +80 -0
- config.json +57 -0
- generation_config.json +10 -0
- model.safetensors +3 -0
- modeling_speculative_llama.py +83 -0
- special_tokens_map.json +24 -0
- tokenizer.json +0 -0
- tokenizer_config.json +44 -0
beagle.json
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset.debug": false,
|
3 |
+
"dataset.git_diff": "",
|
4 |
+
"dataset.git_sha1": "unknown",
|
5 |
+
"dataset.manual_sample_ids": [],
|
6 |
+
"dataset.output_dir": "output",
|
7 |
+
"dataset.path": "output/datasets/ds_Llama-2-7b-chat-hf/",
|
8 |
+
"dataset.run_name": "temp_run",
|
9 |
+
"dataset.seed": 42,
|
10 |
+
"dataset_generation.batch_size": 1,
|
11 |
+
"dataset_generation.debug": false,
|
12 |
+
"dataset_generation.debug_target": null,
|
13 |
+
"dataset_generation.ds_prefix": "ds_",
|
14 |
+
"dataset_generation.git_diff": "",
|
15 |
+
"dataset_generation.git_sha1": "unknown",
|
16 |
+
"dataset_generation.max_length": 2048,
|
17 |
+
"dataset_generation.output_dir": "output",
|
18 |
+
"dataset_generation.run_name": "temp_run",
|
19 |
+
"dataset_generation.save_every": 1000,
|
20 |
+
"dataset_generation.seed": 42,
|
21 |
+
"inference.debug": false,
|
22 |
+
"inference.draft_tree_shape": "mc_sim_7b_65",
|
23 |
+
"inference.git_diff": "",
|
24 |
+
"inference.git_sha1": "unknown",
|
25 |
+
"inference.max_new_tokens": 512,
|
26 |
+
"inference.mode": "speculative",
|
27 |
+
"inference.output_dir": "output",
|
28 |
+
"inference.run_name": "temp_run",
|
29 |
+
"inference.seed": 42,
|
30 |
+
"modeling.add_noise": false,
|
31 |
+
"modeling.attention_offset": "random.randrange(10)",
|
32 |
+
"modeling.attention_wind": "2",
|
33 |
+
"modeling.ckpt_path": null,
|
34 |
+
"modeling.debug": false,
|
35 |
+
"modeling.decoder_key_remap": {},
|
36 |
+
"modeling.dtype": "torch.bfloat16",
|
37 |
+
"modeling.frozen_targets": [],
|
38 |
+
"modeling.git_diff": "",
|
39 |
+
"modeling.git_sha1": "unknown",
|
40 |
+
"modeling.layer_path": "model.layers",
|
41 |
+
"modeling.lmhead_path": "lm_head",
|
42 |
+
"modeling.model_path": "beagle/models/llama2",
|
43 |
+
"modeling.norm_path": "model.norm",
|
44 |
+
"modeling.output_dir": "output",
|
45 |
+
"modeling.reuse_layer": -1,
|
46 |
+
"modeling.rotary_path": "model.rotary_emb",
|
47 |
+
"modeling.run_name": "temp_run",
|
48 |
+
"modeling.seed": 42,
|
49 |
+
"modeling.tokenizer_path": "meta-llama/Llama-2-7b-chat-hf",
|
50 |
+
"modeling.use_fc_eagle": false,
|
51 |
+
"modeling.use_lower_layers": 1,
|
52 |
+
"modeling.use_state_distill": false,
|
53 |
+
"training.adam_beta2": 0.95,
|
54 |
+
"training.bf16": true,
|
55 |
+
"training.ddp_find_unused_parameters": false,
|
56 |
+
"training.debug": false,
|
57 |
+
"training.filter_out_shorts": false,
|
58 |
+
"training.git_diff": "",
|
59 |
+
"training.git_sha1": "1cddc93f8ac2df83b8f58b148dd1b3b06eea8890",
|
60 |
+
"training.gradient_accumulation_steps": 4,
|
61 |
+
"training.learning_rate": 3e-05,
|
62 |
+
"training.logging_steps": 1,
|
63 |
+
"training.lr_scheduler_type": "constant_with_warmup",
|
64 |
+
"training.max_grad_norm": 0.5,
|
65 |
+
"training.max_length": 4096,
|
66 |
+
"training.max_steps": -1,
|
67 |
+
"training.num_train_epochs": 10,
|
68 |
+
"training.output_dir": "output",
|
69 |
+
"training.overwrite_output_dir": true,
|
70 |
+
"training.per_device_train_batch_size": 4,
|
71 |
+
"training.project": "beagle",
|
72 |
+
"training.report_to": "wandb",
|
73 |
+
"training.resume_from_checkpoint": false,
|
74 |
+
"training.resume_wandb_runid": null,
|
75 |
+
"training.run_name": "temp_run",
|
76 |
+
"training.save_steps": 500,
|
77 |
+
"training.save_total_limit": 2,
|
78 |
+
"training.seed": 42,
|
79 |
+
"training.warmup_steps": 50
|
80 |
+
}
|
config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "meta-llama/Llama-2-7b-chat-hf",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForSpeculativeCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoModelForSpeculativeCausalLM": "modeling_speculative_llama.LlamaForSpeculativeCausalLM"
|
10 |
+
},
|
11 |
+
"beagle_add_noise": false,
|
12 |
+
"beagle_attention_offset": "random.randrange(10)",
|
13 |
+
"beagle_attention_wind": "2",
|
14 |
+
"beagle_ckpt_path": null,
|
15 |
+
"beagle_debug": false,
|
16 |
+
"beagle_decoder_key_remap": {},
|
17 |
+
"beagle_dtype": "torch.bfloat16",
|
18 |
+
"beagle_frozen_targets": [],
|
19 |
+
"beagle_git_diff": "",
|
20 |
+
"beagle_git_sha1": "unknown",
|
21 |
+
"beagle_layer_path": "model.layers",
|
22 |
+
"beagle_lmhead_path": "lm_head",
|
23 |
+
"beagle_model_path": "beagle/models/llama2",
|
24 |
+
"beagle_norm_path": "model.norm",
|
25 |
+
"beagle_output_dir": "output",
|
26 |
+
"beagle_reuse_layer": -1,
|
27 |
+
"beagle_rotary_path": "model.rotary_emb",
|
28 |
+
"beagle_run_name": "temp_run",
|
29 |
+
"beagle_seed": 42,
|
30 |
+
"beagle_tokenizer_path": "meta-llama/Llama-2-7b-chat-hf",
|
31 |
+
"beagle_use_fc_eagle": false,
|
32 |
+
"beagle_use_lower_layers": 1,
|
33 |
+
"beagle_use_state_distill": false,
|
34 |
+
"bos_token_id": 1,
|
35 |
+
"eos_token_id": 2,
|
36 |
+
"head_dim": 128,
|
37 |
+
"hidden_act": "silu",
|
38 |
+
"hidden_size": 4096,
|
39 |
+
"initializer_range": 0.02,
|
40 |
+
"intermediate_size": 11008,
|
41 |
+
"max_position_embeddings": 4096,
|
42 |
+
"mlp_bias": false,
|
43 |
+
"model_type": "llama",
|
44 |
+
"num_attention_heads": 32,
|
45 |
+
"num_hidden_layers": 32,
|
46 |
+
"num_key_value_heads": 32,
|
47 |
+
"pretraining_tp": 1,
|
48 |
+
"rms_norm_eps": 1e-05,
|
49 |
+
"rope_scaling": null,
|
50 |
+
"rope_theta": 10000.0,
|
51 |
+
"speculative_base_model": "meta-llama/Llama-2-7b-chat-hf",
|
52 |
+
"tie_word_embeddings": false,
|
53 |
+
"torch_dtype": "bfloat16",
|
54 |
+
"transformers_version": "4.47.1",
|
55 |
+
"use_cache": true,
|
56 |
+
"vocab_size": 32000
|
57 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 1,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"max_length": 4096,
|
6 |
+
"pad_token_id": 0,
|
7 |
+
"temperature": 0.6,
|
8 |
+
"top_p": 0.9,
|
9 |
+
"transformers_version": "4.47.1"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c6336a63dd5b30860cede7c5af5dc4a6b0bc6f32d6a071673ad26166bfc5d6cf
|
3 |
+
size 1333832056
|
modeling_speculative_llama.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.models.llama.modeling_llama import *
|
2 |
+
from beagle.mixin import *
|
3 |
+
|
4 |
+
|
5 |
+
class LlamaBeagleAttention(LlamaAttention, BeagleAttentionMixin):
|
6 |
+
|
7 |
+
def forward(
|
8 |
+
self,
|
9 |
+
hidden_states: torch.Tensor,
|
10 |
+
attention_mask: Optional[torch.Tensor] = None,
|
11 |
+
position_ids: Optional[torch.LongTensor] = None,
|
12 |
+
past_key_value: Optional[Cache] = None,
|
13 |
+
output_attentions: bool = False,
|
14 |
+
use_cache: bool = False,
|
15 |
+
cache_position: Optional[torch.LongTensor] = None,
|
16 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
17 |
+
**kwargs,
|
18 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
19 |
+
|
20 |
+
bsz, q_len, _ = hidden_states.size()
|
21 |
+
query_states, key_states, value_states = self.qkv_transform(
|
22 |
+
hidden_states, past_key_value, use_cache, position_embeddings, **kwargs)
|
23 |
+
|
24 |
+
################################################
|
25 |
+
### everything kept original starting from here
|
26 |
+
################################################
|
27 |
+
|
28 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
29 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
30 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
31 |
+
|
32 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
33 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
34 |
+
attn_weights = attn_weights + causal_mask
|
35 |
+
|
36 |
+
# upcast attention to fp32
|
37 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
38 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
39 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
40 |
+
|
41 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
42 |
+
raise ValueError(
|
43 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
44 |
+
f" {attn_output.size()}"
|
45 |
+
)
|
46 |
+
|
47 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
48 |
+
|
49 |
+
attn_output = attn_output.reshape(bsz, q_len, -1)
|
50 |
+
|
51 |
+
attn_output = self.o_proj(attn_output)
|
52 |
+
|
53 |
+
if not output_attentions:
|
54 |
+
attn_weights = None
|
55 |
+
|
56 |
+
return attn_output, attn_weights, past_key_value
|
57 |
+
|
58 |
+
|
59 |
+
class LlamaBeagleDecoderLayer(LlamaDecoderLayer):
|
60 |
+
def __init__(self, config, layer_id):
|
61 |
+
super().__init__(config, layer_id)
|
62 |
+
|
63 |
+
if not config.beagle_use_fc_eagle:
|
64 |
+
delattr(self, 'self_attn')
|
65 |
+
recycle_vram()
|
66 |
+
self.self_attn = LlamaBeagleAttention(
|
67 |
+
config=config, layer_idx=0
|
68 |
+
)
|
69 |
+
|
70 |
+
|
71 |
+
class LlamaForSpeculativeCausalLM(LlamaForCausalLM, BeagleMixin):
|
72 |
+
_no_split_modules = ["LlamaDecoderLayer", "LlamaBeagleDecoderLayer"]
|
73 |
+
|
74 |
+
def __init__(self, config):
|
75 |
+
super().__init__(config)
|
76 |
+
|
77 |
+
BeagleMixin.__init__(self, config)
|
78 |
+
self.speculative_decoder = LlamaBeagleDecoderLayer(config, layer_id=0)
|
79 |
+
|
80 |
+
self.post_init()
|
81 |
+
|
82 |
+
def forward(self, *args, **kwargs) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPast]:
|
83 |
+
return self.beagle_forward(*args, **kwargs)
|
special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "</s>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": null,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
|
33 |
+
"clean_up_tokenization_spaces": false,
|
34 |
+
"eos_token": "</s>",
|
35 |
+
"extra_special_tokens": {},
|
36 |
+
"legacy": false,
|
37 |
+
"model_max_length": 1000000000000000019884624838656,
|
38 |
+
"pad_token": "</s>",
|
39 |
+
"padding_side": "right",
|
40 |
+
"sp_model_kwargs": {},
|
41 |
+
"tokenizer_class": "LlamaTokenizer",
|
42 |
+
"unk_token": "<unk>",
|
43 |
+
"use_default_system_prompt": false
|
44 |
+
}
|