from transformers.models.llama.modeling_llama import * from beagle.mixin import * class LlamaBeagleAttention(LlamaAttention, BeagleAttentionMixin): def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() query_states, key_states, value_states = self.qkv_transform( hidden_states, past_key_value, use_cache, position_embeddings, **kwargs) ################################################ ### everything kept original starting from here ################################################ key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attention_mask is not None: # no matter the length, we just slice it causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, -1) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value class LlamaBeagleDecoderLayer(LlamaDecoderLayer): def __init__(self, config, layer_id): super().__init__(config, layer_id) if not config.beagle_use_fc_eagle: delattr(self, 'self_attn') recycle_vram() self.self_attn = LlamaBeagleAttention( config=config, layer_idx=layer_id ) class LlamaForSpeculativeCausalLM(LlamaForCausalLM, BeagleMixin): _no_split_modules = ["LlamaDecoderLayer", "LlamaBeagleDecoderLayer"] def __init__(self, config): super().__init__(config) BeagleMixin.__init__(self, config) self.speculative_decoder = LlamaBeagleDecoderLayer(config, layer_id=0) self.post_init() def forward(self, *args, **kwargs) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPast]: return self.beagle_forward(*args, **kwargs)