from typing import Dict, List, Any | |
# from transformers import GPT2Tokenizer | |
# from model import GPT | |
import pipeline | |
class EndpointHandler(): | |
def __init__(self, path=""): | |
# Preload all the elements you are going to need at inference. | |
# model = GPT.from_pretrained(path) | |
# tokenizer = GPT2Tokenizer.from_pretrained('gpt2') | |
# self.pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer) | |
a = 1 | |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: | |
""" | |
data args: | |
inputs (:obj: `str` | `PIL.Image` | `np.array`) | |
kwargs | |
Return: | |
A :obj:`list` | `dict`: will be serialized and returned | |
""" | |
inputs = data.pop("inputs", data) | |
pipeline.start = inputs | |
output = pipeline.infer() | |
# isinstance(output,str) | |
return {"Ans": output} |