from typing import Dict, List, Any # from transformers import GPT2Tokenizer # from model import GPT import pipeline class EndpointHandler(): def __init__(self, path=""): # Preload all the elements you are going to need at inference. # model = GPT.from_pretrained(path) # tokenizer = GPT2Tokenizer.from_pretrained('gpt2') # self.pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer) a = 1 def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: """ data args: inputs (:obj: `str` | `PIL.Image` | `np.array`) kwargs Return: A :obj:`list` | `dict`: will be serialized and returned """ inputs = data.pop("inputs", data) pipeline.start = inputs output = pipeline.infer() # isinstance(output,str) return {"Ans": output}