import os from contextlib import nullcontext import torch import tiktoken from model import GPTConfig, GPT from transformers import GPT2Tokenizer, GPT2Model start = "\n" # or "<|endoftext|>" or etc. Can also specify a file, use as: "FILE:prompt.txt" num_samples = 1 # number of samples to draw max_new_tokens = 100 # number of tokens generated in each sample temperature = 0.6 # 1.0 = no change, < 1.0 = less random, > 1.0 = more random, in predictions top_k = 200 # retain only the top_k most likely tokens, clamp others to have 0 probability seed = 1337 device = 'cpu' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1', etc. dtype = 'float16' output_dir = "" model = GPT.from_pretrained(output_dir) tokenizer = GPT2Tokenizer.from_pretrained(output_dir) def infer(): torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast ptdtype = { 'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16 }[dtype] ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast( device_type=device_type, dtype=ptdtype) # ckpt_path = os.path.join(os.getcwd(), out_dir, 'ckpt.pt') # checkpoint = torch.load(ckpt_path, map_location=device) # gptconf = GPTConfig(**checkpoint['model_args']) # model = GPT(gptconf) # state_dict = checkpoint['model'] # unwanted_prefix = '_orig_mod.' # for k, v in list(state_dict.items()): # if k.startswith(unwanted_prefix): # state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k) # model.load_state_dict(state_dict) model.eval() model.to(device) # enc = tiktoken.get_encoding("gpt2") # encode = lambda s: enc.encode(s, allowed_special={"<|endoftext|>"}) # decode = lambda l: enc.decode(l) encode = lambda s: tokenizer.encode(s) decode = lambda l: tokenizer.decode(l) start_ids = encode(start) x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...]) with torch.no_grad(): with ctx: for k in range(num_samples): y = model.generate(x, max_new_tokens, temperature=temperature, top_k=top_k) return decode(y[0].tolist())