ppo-LunarLander-v2 / config.json
wangxso's picture
Upload PPO LunarLander-v2 trained agent
b95d61c
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x785726698af0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x785726698b80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x785726698c10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x785726698ca0>", "_build": "<function ActorCriticPolicy._build at 0x785726698d30>", "forward": "<function ActorCriticPolicy.forward at 0x785726698dc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x785726698e50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x785726698ee0>", "_predict": "<function ActorCriticPolicy._predict at 0x785726698f70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x785726699000>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x785726699090>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x785726699120>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7857266956c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691132627674372949, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqZY7hdUiA/wBUgvBDLwb5b7iE5+OTsPAAAAAAAAAAAAIj8vInqMT3Z0kk+fH1wvgOIxT3QOZS9AAAAAAAAAAAApOA8BWGgu1eMIzwsd208VffwvJ5OTD0AAIA/AACAPya9er5jIjw/KLBPvZeA/b5DBYq+NXPaPAAAAAAAAAAAZv0Eva4j9rrSUH47wvaBPGfY0buVVGI9AACAPwAAgD+6ngo+CmCEPttLf77TUM6+wcNXPR48Fr4AAAAAAAAAAKZCrL1HD1Y+Du1APXYuir6oWZ27FwaDPQAAAAAAAAAAZlACvT0ubTx2Y5U94L8fvsBqjTwoG1G8AAAAAAAAAAAzldO9EueDP6z6mr6S3C6/1+Pfvds46b0AAAAAAAAAAFqBsL20BRw+31AvPr8/br6IOy+9BYDIPQAAAAAAAAAAfZRRvrdOrj5uB9A+7q+GviAOhD2C/Qs+AAAAAAAAAACaivQ8j1o3ulAgKr1VGpK2yRAZu7blBDYAAIA/AAAAAJ7Wm75bxvg+buwUPsVcrb7vDY++IYQJPgAAAAAAAAAAM0FYveGXwDsdWDc93LXtvWkekL2S2ss+AACAPwAAAAAzP2+8H7ruu+ygojs+Z608silbvdndjz0AAIA/AACAP2aKzjvoIJM+jdslviL6uL7ionG9Y5qcvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV+AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHF2YjrzGxWMAWyUTVIBjAF0lEdArZU4Xdj5K3V9lChoBkdAcszXrt3OfWgHS9loCEdArZVAGyHEdnV9lChoBkdAb4QUUwi7kGgHS9VoCEdArZVl7SiM53V9lChoBkdAcPgt2cJ+lWgHS+loCEdArZVsvCdjG3V9lChoBkdAcjQZU1hsqWgHS7xoCEdArZVweNkvsnV9lChoBkdAcToVhCtzS2gHS9xoCEdArZWxw2l2vHV9lChoBkdAcUTUSZjQRmgHS8poCEdArZXPPw/gSHV9lChoBkdAca7yp71Iy2gHS+FoCEdArZX5DArQPnV9lChoBkdAbszZV4oqkWgHS/RoCEdArZY31OCXhXV9lChoBkdAbnwpVjqfOGgHS9poCEdArZZOl9BrvnV9lChoBkdAcMnTspoboGgHTQwBaAhHQK2WTlijL0V1fZQoaAZHQHHRJtBOYY1oB0v5aAhHQK2Wkx59mYl1fZQoaAZHQHI9oqgAZKpoB0vXaAhHQK2Xb+YtxuN1fZQoaAZHQHMZDlLeyiVoB0v+aAhHQK2XjPrOZ9d1fZQoaAZHQHL0IB7u2JBoB0vhaAhHQK2X4n1nM+x1fZQoaAZHQHIQhgmZ3LVoB0vhaAhHQK2X6rupjtp1fZQoaAZHQHMAUUoKD01oB0vbaAhHQK2YCABkqc51fZQoaAZHQHHlWVqveP9oB00TAWgIR0CtmBvJRwZPdX2UKGgGR0BwaBd7fHghaAdL5WgIR0CtmCKzZ6D5dX2UKGgGR0Bw78p1A7gbaAdL1mgIR0CtmEC7kGRndX2UKGgGR0ByVqa9bor4aAdNGQFoCEdArZhwP3BYWHV9lChoBkdAchjI2OyVwGgHTQABaAhHQK2YfMzuWrx1fZQoaAZHQEYjYywfQrtoB0usaAhHQK2YqQkona51fZQoaAZHQHLpEsFt8/loB0vpaAhHQK2YwNZNfw91fZQoaAZHQHHUpT6zmfZoB0vmaAhHQK2ZCKsMiKR1fZQoaAZHQHGQbPMSsbNoB00PAWgIR0CtmQbwjMV2dX2UKGgGR0Bw2DO1OTJRaAdNBwFoCEdArZlk7dSEUXV9lChoBkdAcvpzRhMJyGgHTREBaAhHQK2ZaptJnQJ1fZQoaAZHQG+7aGgzxgBoB0vfaAhHQK2aDPAO8TV1fZQoaAZHQHApyfpUxVRoB0vQaAhHQK2aSV6/qPh1fZQoaAZHQHB+5B1LamJoB0vNaAhHQK2afbO/tY11fZQoaAZHQHB8RA8jiXJoB0vaaAhHQK2ajpCa7Vd1fZQoaAZHQHMln+MqBmRoB00OAWgIR0CtmsLAxi5NdX2UKGgGR0Bx4MFotcv/aAdLxmgIR0Ctmsw6ySmqdX2UKGgGR0Bu9l5v99+gaAdL+WgIR0Cto67aZhKEdX2UKGgGR0BwEhzLfUF0aAdL12gIR0Cto8sgdOqOdX2UKGgGR0BxR3wG4ZuRaAdL9GgIR0Cto/PC/GlzdX2UKGgGR0BzGxZwGW2PaAdLzmgIR0CtpACFbmlqdX2UKGgGR0BI0N83Mpw0aAdLqmgIR0CtpEnD7655dX2UKGgGR0BwNkU8FINFaAdL1WgIR0CtpF9fb9IgdX2UKGgGR0BvkgOrhisoaAdNCwFoCEdAraSvjABT43V9lChoBkdAcSbZid8Rc2gHS/JoCEdAraUxlcyFf3V9lChoBkdAcFSF1jiGWWgHS+hoCEdAraY3CEYfn3V9lChoBkdAcJnHim2srGgHTQUBaAhHQK2mXNGEwnJ1fZQoaAZHQHBextHhCMRoB0vfaAhHQK2mZH80k4Z1fZQoaAZHQHBfKBAfMfRoB0vlaAhHQK2mZ889wFV1fZQoaAZHQHJu4QarFOxoB0vYaAhHQK2mjr30wrV1fZQoaAZHQHENCaqjrRloB0vCaAhHQK2mrABT4tZ1fZQoaAZHQHLh2ilBQepoB0vsaAhHQK2myT8HfMx1fZQoaAZHQHMU2U8mrsBoB0vcaAhHQK2myPwuuih1fZQoaAZHQHDj0G7jDKpoB0vRaAhHQK2mz0WdmQN1fZQoaAZHQHDM7B9Cu2ZoB00IAWgIR0CtpzvS+g14dX2UKGgGR0BxxdV6u4gBaAdL8WgIR0Ctp5PwNLDidX2UKGgGR0Bv3cuHvc8DaAdNKQJoCEdAraf7B9Cu2nV9lChoBkdAcW03VCojwGgHTQUBaAhHQK2n/fVqesh1fZQoaAZHQG9rYRmK64FoB0vzaAhHQK2oGpuuRtB1fZQoaAZHQHNBucUdq+JoB00JAmgIR0CtqMwIt16mdX2UKGgGR0BxQm/M4cWCaAdL+mgIR0CtqN287IT5dX2UKGgGR0BMBtqxkd3jaAdLv2gIR0CtqUDI7vG7dX2UKGgGR0Bw/avq1PWQaAdL6GgIR0Ctqb7euV5bdX2UKGgGR0ByCwQ9RrJsaAdL1GgIR0Ctqc6vJRwZdX2UKGgGR0BuCfI8yN4raAdLyGgIR0CtqezuF6AwdX2UKGgGR0Bv7LMC9ytFaAdL9WgIR0Ctqi+eOGTLdX2UKGgGR0ByFtnmJWNnaAdL9mgIR0CtqixMN+b3dX2UKGgGR0ByvXhgmZ3LaAdL52gIR0CtqmvdVNpNdX2UKGgGR0Bwd4HB1s+FaAdL7WgIR0CtqoNvn8sMdX2UKGgGR0BwOlXko4MnaAdL5mgIR0CtqvNP557gdX2UKGgGR0ByKAqEvkBCaAdNKwFoCEdAratfV09yLnV9lChoBkdAchn3Fkxyn2gHS9NoCEdAraui1Cw8n3V9lChoBkdAcO6z5XU6P2gHTRABaAhHQK2sKdlNDdB1fZQoaAZHQHMsSLMs6JZoB0v+aAhHQK2sUvCdjG11fZQoaAZHQHI6MkhRqGloB0vSaAhHQK2seG7Bfrt1fZQoaAZHQHBo+vdM0xdoB0vraAhHQK2s3yup0fZ1fZQoaAZHQHCw4UrTYuloB0vfaAhHQK2tJ7PY4AF1fZQoaAZHQHD012A5JbtoB008AWgIR0CtrYBdt2s8dX2UKGgGR0BykXEMspXqaAdL0mgIR0CtrZYjrzGxdX2UKGgGR0Byynr5ZbIMaAdL62gIR0CtrcPNu+AVdX2UKGgGR0Bw7Kr0aqCIaAdL1WgIR0CtrcpqqOtGdX2UKGgGR0BzWxk6Lfk4aAdLzGgIR0Ctre3RG+bmdX2UKGgGR0BykQOe8PFvaAdL0WgIR0CtrlKlxffGdX2UKGgGR0BxT+AmReTnaAdNLwFoCEdAra6kZYPoV3V9lChoBkdAcUAl/H5rQGgHTREBaAhHQK2uuZssQNF1fZQoaAZHQHIHsC1Z1V5oB00tAWgIR0CtruOIhyKfdX2UKGgGR0Bw5pMJx//eaAdL5mgIR0CtrxvJzT4MdX2UKGgGR0BzFdL26ClKaAdNDQFoCEdAra9p0U47zXV9lChoBkdAcWxzgdfb9WgHS9xoCEdAra92yAxzrHV9lChoBkdAb7wL8aXKKmgHS9loCEdAra+FT5wfhnV9lChoBkdAb+3EQ5FPSGgHS9BoCEdArbAMtCiRGXV9lChoBkdAcr7MkyDZlGgHTSQBaAhHQK2wNnezlcR1fZQoaAZHQHNPVQl8gIRoB00FAWgIR0CtsEufNA1OdX2UKGgGR0BzaE84gieNaAdL3mgIR0CtsE88TzundX2UKGgGR0BwJlSbYsd1aAdL+WgIR0CtsFRODaoNdX2UKGgGR0BxSsSL61staAdLz2gIR0CtsHXkPtladX2UKGgGR0BzCjVwxWT5aAdL4GgIR0CtsH1TaTOgdX2UKGgGR0Bxa2kWRA8kaAdL42gIR0CtsIn0btJGdX2UKGgGR0Bxa4BDG96DaAdL0WgIR0CtsNBD5TIedX2UKGgGR0ByzUb5uZTiaAdL0mgIR0CtsSazNUwSdX2UKGgGR0BwccymALApaAdL02gIR0CtsVCI1tO3dX2UKGgGR0BwXU1XNke7aAdL6WgIR0CtsVu2RaHLdX2UKGgGR0BxQ2zJIUaiaAdL5WgIR0CtsbxQJokBdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}