--- language: zh datasets: - common_voice metrics: - wer - cer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Chinese (zh-CN) by wbbbbb results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice zh-CN type: common_voice args: zh-CN metrics: - name: Test WER type: wer value: 70.47 - name: Test CER type: cer value: 12.30 --- # Fine-tuned XLSR-53 large model for speech recognition in Chinese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Chinese using the train and validation splits of [Common Voice 6.1](https://huggingface.co/datasets/common_voice), [CSS10](https://github.com/Kyubyong/css10) and [ST-CMDS](http://www.openslr.org/38/). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned on RTX3090 for 50h The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint ## Usage The model can be used directly (without a language model) as follows... Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("wbbbbb/wav2vec2-large-chinese-zh-cn") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` ## Evaluation The model can be evaluated as follows on the Chinese (zh-CN) test data of Common Voice. ```python import torch import re import librosa from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import warnings import os os.environ["KMP_AFFINITY"] = "" LANG_ID = "zh-CN" MODEL_ID = "zh-CN-output-aishell" DEVICE = "cuda" test_dataset = load_dataset("common_voice", LANG_ID, split="test") wer = load_metric("wer") cer = load_metric("cer") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) model.to(DEVICE) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): with warnings.catch_warnings(): warnings.simplefilter("ignore") speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = ( re.sub("([^\u4e00-\u9fa5\u0030-\u0039])", "", batch["sentence"]).lower() + " " ) return batch test_dataset = test_dataset.map( speech_file_to_array_fn, num_proc=15, remove_columns=['client_id', 'up_votes', 'down_votes', 'age', 'gender', 'accent', 'locale', 'segment'], ) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor( batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True ) with torch.no_grad(): logits = model( inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE), ).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) predictions = [x.lower() for x in result["pred_strings"]] references = [x.lower() for x in result["sentence"]] print( f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}" ) print(f"CER: {cer.compute(predictions=predictions, references=references) * 100}") ``` **Test Result**: In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well (on 2022-07-18). Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used. | Model | WER | CER | | ------------- | ------------- | ------------- | | wbbbbb/wav2vec2-large-chinese-zh-cn | **70.47%** | **12.30%** | | jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn | **82.37%** | **19.03%** | | ydshieh/wav2vec2-large-xlsr-53-chinese-zh-cn-gpt | 84.01% | 20.95% | ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021xlsr53-large-chinese, title={Fine-tuned {XLSR}-53 large model for speech recognition in {C}hinese}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/wbbbbb/wav2vec2-large-chinese-zh-cn}}, year={2021} } ```