--- license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-base-finetuned-depression results: [] --- # roberta-base-finetuned-depression This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6580 - Precision: 0.8962 - Recall: 0.9023 - F1: 0.8983 - Accuracy: 0.9062 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 469 | 0.4520 | 0.8637 | 0.7997 | 0.8216 | 0.8635 | | 0.5796 | 2.0 | 938 | 0.6088 | 0.9063 | 0.8592 | 0.8733 | 0.8849 | | 0.3217 | 3.0 | 1407 | 0.4402 | 0.8921 | 0.8964 | 0.8936 | 0.9030 | | 0.2159 | 4.0 | 1876 | 0.6420 | 0.8725 | 0.8890 | 0.8789 | 0.8955 | | 0.1496 | 5.0 | 2345 | 0.6017 | 0.8875 | 0.8973 | 0.8908 | 0.9019 | | 0.0827 | 6.0 | 2814 | 0.6586 | 0.8804 | 0.9009 | 0.8895 | 0.9009 | | 0.0504 | 7.0 | 3283 | 0.6580 | 0.8962 | 0.9023 | 0.8983 | 0.9062 | | 0.05 | 8.0 | 3752 | 0.7374 | 0.8859 | 0.9013 | 0.8925 | 0.9030 | | 0.0394 | 9.0 | 4221 | 0.7348 | 0.8746 | 0.9043 | 0.8880 | 0.9019 | | 0.0241 | 10.0 | 4690 | 0.7371 | 0.8773 | 0.9027 | 0.8883 | 0.9030 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1