File size: 7,739 Bytes
8f10d3a d2ac481 8f10d3a 3829a5a d2ac481 8f10d3a 3829a5a 9bab0d3 3829a5a 8db388b 3829a5a 3bfb8b1 9bab0d3 3bfb8b1 3829a5a 3bfb8b1 3829a5a 3bfb8b1 9bab0d3 3829a5a 3a088cb 3bfb8b1 3829a5a 3bfb8b1 3829a5a 0d29b76 d2ac481 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
---
language:
- zh
- en
license: mit
datasets:
- wenbopan/Fusang-v1
- wenbopan/OpenOrca-zh-20k
model-index:
- name: Faro-Yi-34B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: ENEM Challenge (No Images)
type: eduagarcia/enem_challenge
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 73.2
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=wenbopan/Faro-Yi-34B
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BLUEX (No Images)
type: eduagarcia-temp/BLUEX_without_images
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 64.81
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=wenbopan/Faro-Yi-34B
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: OAB Exams
type: eduagarcia/oab_exams
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 54.53
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=wenbopan/Faro-Yi-34B
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 RTE
type: assin2
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 91.58
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=wenbopan/Faro-Yi-34B
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 STS
type: eduagarcia/portuguese_benchmark
split: test
args:
num_few_shot: 15
metrics:
- type: pearson
value: 79.37
name: pearson
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=wenbopan/Faro-Yi-34B
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: FaQuAD NLI
type: ruanchaves/faquad-nli
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 71.84
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=wenbopan/Faro-Yi-34B
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HateBR Binary
type: ruanchaves/hatebr
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 87.1
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=wenbopan/Faro-Yi-34B
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: PT Hate Speech Binary
type: hate_speech_portuguese
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 65.34
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=wenbopan/Faro-Yi-34B
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: tweetSentBR
type: eduagarcia/tweetsentbr_fewshot
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 70.46
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=wenbopan/Faro-Yi-34B
name: Open Portuguese LLM Leaderboard
---
![image/webp](https://cdn-uploads.huggingface.co/production/uploads/62cd3a3691d27e60db0698b0/s21sMRxRT56c5t4M15GBP.webp)
**The Faro chat model focuses on practicality and long-context modeling. It handles various downstream tasks with higher quality, delivering stable and reliable results even when inputs contain lengthy documents or complex instructions. Faro seamlessly works in both English and Chinese.**
# Faro-Yi-34B
Faro-Yi-34B is an improved [Yi-34B-200K](https://huggingface.co/01-ai/Yi-34B-200K) with extensive instruction tuning on [Fusang-V1](https://huggingface.co/datasets/wenbopan/Fusang-v1). Compared to Yi-34B-200K, Faro-Yi-34B has gained greater capability in various downstream tasks and long-context modeling thanks to the large-scale synthetic data in Fusang-V1.
Just like Yi-34B-200K, Faro-Yi-34B supports up to 200K context length.
## How to Use
Faro-Yi-9B-200K uses chatml template. I recommend using vLLM for long inputs.
```python
import io
import requests
from PyPDF2 import PdfReader
from vllm import LLM, SamplingParams
llm = LLM(model="wenbopan/Faro-Yi-34B")
pdf_data = io.BytesIO(requests.get("https://arxiv.org/pdf/2303.08774.pdf").content)
document = "".join(page.extract_text() for page in PdfReader(pdf_data).pages) # 100 pages
question = f"{document}\n\nAccording to the paper, what is the parameter count of GPT-4?"
messages = [ {"role": "user", "content": question} ] # 83K tokens
prompt = llm.get_tokenizer().apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
output = llm.generate(prompt, SamplingParams(temperature=0.8, max_tokens=500))
print(output[0].outputs[0].text)
# Yi-9B-200K: 175B. GPT-4 has 175B \nparameters. How many models were combined to create GPT-4? Answer: 6. ...
# Faro-Yi-9B-200K: GPT-4 does not have a publicly disclosed parameter count due to the competitive landscape and safety implications of large-scale models like GPT-4. ...
```
<details> <summary>Or With Transformers</summary>
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained('wenbopan/Faro-Yi-34B', device_map="cuda")
tokenizer = AutoTokenizer.from_pretrained('wenbopan/Faro-Yi-34B')
messages = [
{"role": "system", "content": "You are a helpful assistant. Always answer with a short response."},
{"role": "user", "content": "Tell me what is Pythagorean theorem like you are a pirate."}
]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device)
generated_ids = model.generate(input_ids, max_new_tokens=512, temperature=0.5)
response = tokenizer.decode(generated_ids[0], skip_special_tokens=True) # Aye, matey! The Pythagorean theorem is a nautical rule that helps us find the length of the third side of a triangle. ...
```
</details>
For more info please refer to [wenbopan/Faro-Yi-9B](https://huggingface.co/wenbopan/Faro-Yi-9B)
# Open Portuguese LLM Leaderboard Evaluation Results
Detailed results can be found [here](https://huggingface.co/datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/wenbopan/Faro-Yi-34B) and on the [🚀 Open Portuguese LLM Leaderboard](https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard)
| Metric | Value |
|--------------------------|---------|
|Average |**73.14**|
|ENEM Challenge (No Images)| 73.20|
|BLUEX (No Images) | 64.81|
|OAB Exams | 54.53|
|Assin2 RTE | 91.58|
|Assin2 STS | 79.37|
|FaQuAD NLI | 71.84|
|HateBR Binary | 87.10|
|PT Hate Speech Binary | 65.34|
|tweetSentBR | 70.46|
|