--- language: - zh - en license: mit datasets: - wenbopan/Fusang-v1 - wenbopan/OpenOrca-zh-20k model-index: - name: Faro-Yi-34B results: - task: type: text-generation name: Text Generation dataset: name: ENEM Challenge (No Images) type: eduagarcia/enem_challenge split: train args: num_few_shot: 3 metrics: - type: acc value: 73.2 name: accuracy source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=wenbopan/Faro-Yi-34B name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BLUEX (No Images) type: eduagarcia-temp/BLUEX_without_images split: train args: num_few_shot: 3 metrics: - type: acc value: 64.81 name: accuracy source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=wenbopan/Faro-Yi-34B name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: OAB Exams type: eduagarcia/oab_exams split: train args: num_few_shot: 3 metrics: - type: acc value: 54.53 name: accuracy source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=wenbopan/Faro-Yi-34B name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Assin2 RTE type: assin2 split: test args: num_few_shot: 15 metrics: - type: f1_macro value: 91.58 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=wenbopan/Faro-Yi-34B name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Assin2 STS type: eduagarcia/portuguese_benchmark split: test args: num_few_shot: 15 metrics: - type: pearson value: 79.37 name: pearson source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=wenbopan/Faro-Yi-34B name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: FaQuAD NLI type: ruanchaves/faquad-nli split: test args: num_few_shot: 15 metrics: - type: f1_macro value: 71.84 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=wenbopan/Faro-Yi-34B name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HateBR Binary type: ruanchaves/hatebr split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 87.1 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=wenbopan/Faro-Yi-34B name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: PT Hate Speech Binary type: hate_speech_portuguese split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 65.34 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=wenbopan/Faro-Yi-34B name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: tweetSentBR type: eduagarcia/tweetsentbr_fewshot split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 70.46 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=wenbopan/Faro-Yi-34B name: Open Portuguese LLM Leaderboard --- ![image/webp](https://cdn-uploads.huggingface.co/production/uploads/62cd3a3691d27e60db0698b0/s21sMRxRT56c5t4M15GBP.webp) **The Faro chat model focuses on practicality and long-context modeling. It handles various downstream tasks with higher quality, delivering stable and reliable results even when inputs contain lengthy documents or complex instructions. Faro seamlessly works in both English and Chinese.** # Faro-Yi-34B Faro-Yi-34B is an improved [Yi-34B-200K](https://huggingface.co/01-ai/Yi-34B-200K) with extensive instruction tuning on [Fusang-V1](https://huggingface.co/datasets/wenbopan/Fusang-v1). Compared to Yi-34B-200K, Faro-Yi-34B has gained greater capability in various downstream tasks and long-context modeling thanks to the large-scale synthetic data in Fusang-V1. Just like Yi-34B-200K, Faro-Yi-34B supports up to 200K context length. ## How to Use Faro-Yi-9B-200K uses chatml template. I recommend using vLLM for long inputs. ```python import io import requests from PyPDF2 import PdfReader from vllm import LLM, SamplingParams llm = LLM(model="wenbopan/Faro-Yi-34B") pdf_data = io.BytesIO(requests.get("https://arxiv.org/pdf/2303.08774.pdf").content) document = "".join(page.extract_text() for page in PdfReader(pdf_data).pages) # 100 pages question = f"{document}\n\nAccording to the paper, what is the parameter count of GPT-4?" messages = [ {"role": "user", "content": question} ] # 83K tokens prompt = llm.get_tokenizer().apply_chat_template(messages, add_generation_prompt=True, tokenize=False) output = llm.generate(prompt, SamplingParams(temperature=0.8, max_tokens=500)) print(output[0].outputs[0].text) # Yi-9B-200K: 175B. GPT-4 has 175B \nparameters. How many models were combined to create GPT-4? Answer: 6. ... # Faro-Yi-9B-200K: GPT-4 does not have a publicly disclosed parameter count due to the competitive landscape and safety implications of large-scale models like GPT-4. ... ```
Or With Transformers ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained('wenbopan/Faro-Yi-34B', device_map="cuda") tokenizer = AutoTokenizer.from_pretrained('wenbopan/Faro-Yi-34B') messages = [ {"role": "system", "content": "You are a helpful assistant. Always answer with a short response."}, {"role": "user", "content": "Tell me what is Pythagorean theorem like you are a pirate."} ] input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device) generated_ids = model.generate(input_ids, max_new_tokens=512, temperature=0.5) response = tokenizer.decode(generated_ids[0], skip_special_tokens=True) # Aye, matey! The Pythagorean theorem is a nautical rule that helps us find the length of the third side of a triangle. ... ```
For more info please refer to [wenbopan/Faro-Yi-9B](https://huggingface.co/wenbopan/Faro-Yi-9B) # Open Portuguese LLM Leaderboard Evaluation Results Detailed results can be found [here](https://huggingface.co/datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/wenbopan/Faro-Yi-34B) and on the [🚀 Open Portuguese LLM Leaderboard](https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard) | Metric | Value | |--------------------------|---------| |Average |**73.14**| |ENEM Challenge (No Images)| 73.20| |BLUEX (No Images) | 64.81| |OAB Exams | 54.53| |Assin2 RTE | 91.58| |Assin2 STS | 79.37| |FaQuAD NLI | 71.84| |HateBR Binary | 87.10| |PT Hate Speech Binary | 65.34| |tweetSentBR | 70.46|