File size: 67,183 Bytes
8cfb1f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
---
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_format: pickle
model_file: pipeline_model_sklearn.joblib
widget:
- structuredData:
Age:
- 23
- 47
- 47
BP:
- HIGH
- LOW
- LOW
Cholesterol:
- HIGH
- HIGH
- HIGH
K:
- 0.031258
- 0.056468
- 0.068944
Na:
- 0.792535
- 0.739309
- 0.697269
Sex:
- F
- M
- M
---
# Model description
[More Information Needed]
## Intended uses & limitations
[More Information Needed]
## Training Procedure
[More Information Needed]
### Hyperparameters
<details>
<summary> Click to expand </summary>
| Hyperparameter | Value |
|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| memory | |
| steps | [('featureunion', FeatureUnion(transformer_list=[('float32_transform_139955258811312',<br /> Pipeline(steps=[('numpycolumnselector',<br /> NumpyColumnSelector(columns=[1,<br /> 2,<br /> 3])),<br /> ('compressstrings',<br /> CompressStrings(compress_type='hash',<br /> dtypes_list=['char_str',<br /> 'char_str',<br /> 'char_str'],<br /> missing_values_reference_list=['',<br /> '-',<br /> '?',<br /> nan],<br /> misslist_list=[[],<br /> [],<br /> []])),<br /> ('numpyreplacemissingvalues'...<br /> FloatStr2Float(dtypes_list=['float_int_num',<br /> 'float_num',<br /> 'float_num'],<br /> missing_values_reference_list=[])),<br /> ('numpyreplacemissingvalues',<br /> NumpyReplaceMissingValues(missing_values=[])),<br /> ('numimputer',<br /> NumImputer(missing_values=nan,<br /> strategy='median')),<br /> ('optstandardscaler',<br /> OptStandardScaler(use_scaler_flag=False)),<br /> ('float32_transform',<br /> float32_transform())]))])), ('numpypermutearray', NumpyPermuteArray(axis=0, permutation_indices=[1, 2, 3, 0, 4, 5])), ('lgbmclassifier', LGBMClassifier(class_weight='balanced', n_jobs=1, random_state=33))] |
| verbose | False |
| featureunion | FeatureUnion(transformer_list=[('float32_transform_139955258811312',<br /> Pipeline(steps=[('numpycolumnselector',<br /> NumpyColumnSelector(columns=[1,<br /> 2,<br /> 3])),<br /> ('compressstrings',<br /> CompressStrings(compress_type='hash',<br /> dtypes_list=['char_str',<br /> 'char_str',<br /> 'char_str'],<br /> missing_values_reference_list=['',<br /> '-',<br /> '?',<br /> nan],<br /> misslist_list=[[],<br /> [],<br /> []])),<br /> ('numpyreplacemissingvalues'...<br /> FloatStr2Float(dtypes_list=['float_int_num',<br /> 'float_num',<br /> 'float_num'],<br /> missing_values_reference_list=[])),<br /> ('numpyreplacemissingvalues',<br /> NumpyReplaceMissingValues(missing_values=[])),<br /> ('numimputer',<br /> NumImputer(missing_values=nan,<br /> strategy='median')),<br /> ('optstandardscaler',<br /> OptStandardScaler(use_scaler_flag=False)),<br /> ('float32_transform',<br /> float32_transform())]))]) |
| numpypermutearray | NumpyPermuteArray(axis=0, permutation_indices=[1, 2, 3, 0, 4, 5]) |
| lgbmclassifier | LGBMClassifier(class_weight='balanced', n_jobs=1, random_state=33) |
| featureunion__n_jobs | |
| featureunion__transformer_list | [('float32_transform_139955258811312', Pipeline(steps=[('numpycolumnselector', NumpyColumnSelector(columns=[1, 2, 3])),<br /> ('compressstrings',<br /> CompressStrings(compress_type='hash',<br /> dtypes_list=['char_str', 'char_str',<br /> 'char_str'],<br /> missing_values_reference_list=['', '-', '?',<br /> nan],<br /> misslist_list=[[], [], []])),<br /> ('numpyreplacemissingvalues',<br /> NumpyReplaceMissingValues(missing_values=[])),<br /> ('numpyreplaceunknown...<br /> 40061271003327253395033901872323469393]],<br /> missing_values_reference_list=['',<br /> '-',<br /> '?',<br /> nan])),<br /> ('boolean2float', boolean2float()),<br /> ('catimputer',<br /> CatImputer(missing_values=nan, strategy='most_frequent')),<br /> ('catencoder',<br /> CatEncoder(categories='auto', dtype=<class 'numpy.float64'>,<br /> encoding='ordinal', handle_unknown='error')),<br /> ('float32_transform', float32_transform())])), ('float32_transform_139955258809968', Pipeline(steps=[('numpycolumnselector', NumpyColumnSelector(columns=[0, 4, 5])),<br /> ('floatstr2float',<br /> FloatStr2Float(dtypes_list=['float_int_num', 'float_num',<br /> 'float_num'],<br /> missing_values_reference_list=[])),<br /> ('numpyreplacemissingvalues',<br /> NumpyReplaceMissingValues(missing_values=[])),<br /> ('numimputer',<br /> NumImputer(missing_values=nan, strategy='median')),<br /> ('optstandardscaler', OptStandardScaler(use_scaler_flag=False)),<br /> ('float32_transform', float32_transform())]))] |
| featureunion__transformer_weights | |
| featureunion__verbose | False |
| featureunion__float32_transform_139955258811312 | Pipeline(steps=[('numpycolumnselector', NumpyColumnSelector(columns=[1, 2, 3])),<br /> ('compressstrings',<br /> CompressStrings(compress_type='hash',<br /> dtypes_list=['char_str', 'char_str',<br /> 'char_str'],<br /> missing_values_reference_list=['', '-', '?',<br /> nan],<br /> misslist_list=[[], [], []])),<br /> ('numpyreplacemissingvalues',<br /> NumpyReplaceMissingValues(missing_values=[])),<br /> ('numpyreplaceunknown...<br /> 40061271003327253395033901872323469393]],<br /> missing_values_reference_list=['',<br /> '-',<br /> '?',<br /> nan])),<br /> ('boolean2float', boolean2float()),<br /> ('catimputer',<br /> CatImputer(missing_values=nan, strategy='most_frequent')),<br /> ('catencoder',<br /> CatEncoder(categories='auto', dtype=<class 'numpy.float64'>,<br /> encoding='ordinal', handle_unknown='error')),<br /> ('float32_transform', float32_transform())]) |
| featureunion__float32_transform_139955258809968 | Pipeline(steps=[('numpycolumnselector', NumpyColumnSelector(columns=[0, 4, 5])),<br /> ('floatstr2float',<br /> FloatStr2Float(dtypes_list=['float_int_num', 'float_num',<br /> 'float_num'],<br /> missing_values_reference_list=[])),<br /> ('numpyreplacemissingvalues',<br /> NumpyReplaceMissingValues(missing_values=[])),<br /> ('numimputer',<br /> NumImputer(missing_values=nan, strategy='median')),<br /> ('optstandardscaler', OptStandardScaler(use_scaler_flag=False)),<br /> ('float32_transform', float32_transform())]) |
| featureunion__float32_transform_139955258811312__memory | |
| featureunion__float32_transform_139955258811312__steps | [('numpycolumnselector', NumpyColumnSelector(columns=[1, 2, 3])), ('compressstrings', CompressStrings(compress_type='hash',<br /> dtypes_list=['char_str', 'char_str', 'char_str'],<br /> missing_values_reference_list=['', '-', '?', nan],<br /> misslist_list=[[], [], []])), ('numpyreplacemissingvalues', NumpyReplaceMissingValues(missing_values=[])), ('numpyreplaceunknownvalues', NumpyReplaceUnknownValues(filling_values=nan,<br /> filling_values_list=[nan, nan, nan],<br /> known_values_list=[[170172835760119224333519554008280666130,<br /> 140114708448418632577632402066430035116],<br /> [245397760256243238036686602120338271372,<br /> 87378989482499796866217412016778320776,<br /> 40061271003327253395033901872323469393],<br /> [245397760256243238036686602120338271372,<br /> 40061271003327253395033901872323469393]],<br /> missing_values_reference_list=['', '-', '?', nan])), ('boolean2float', boolean2float()), ('catimputer', CatImputer(missing_values=nan, strategy='most_frequent')), ('catencoder', CatEncoder(categories='auto', dtype=<class 'numpy.float64'>, encoding='ordinal',<br /> handle_unknown='error')), ('float32_transform', float32_transform())] |
| featureunion__float32_transform_139955258811312__verbose | False |
| featureunion__float32_transform_139955258811312__numpycolumnselector | NumpyColumnSelector(columns=[1, 2, 3]) |
| featureunion__float32_transform_139955258811312__compressstrings | CompressStrings(compress_type='hash',<br /> dtypes_list=['char_str', 'char_str', 'char_str'],<br /> missing_values_reference_list=['', '-', '?', nan],<br /> misslist_list=[[], [], []]) |
| featureunion__float32_transform_139955258811312__numpyreplacemissingvalues | NumpyReplaceMissingValues(missing_values=[]) |
| featureunion__float32_transform_139955258811312__numpyreplaceunknownvalues | NumpyReplaceUnknownValues(filling_values=nan,<br /> filling_values_list=[nan, nan, nan],<br /> known_values_list=[[170172835760119224333519554008280666130,<br /> 140114708448418632577632402066430035116],<br /> [245397760256243238036686602120338271372,<br /> 87378989482499796866217412016778320776,<br /> 40061271003327253395033901872323469393],<br /> [245397760256243238036686602120338271372,<br /> 40061271003327253395033901872323469393]],<br /> missing_values_reference_list=['', '-', '?', nan]) |
| featureunion__float32_transform_139955258811312__boolean2float | boolean2float() |
| featureunion__float32_transform_139955258811312__catimputer | CatImputer(missing_values=nan, strategy='most_frequent') |
| featureunion__float32_transform_139955258811312__catencoder | CatEncoder(categories='auto', dtype=<class 'numpy.float64'>, encoding='ordinal',<br /> handle_unknown='error') |
| featureunion__float32_transform_139955258811312__float32_transform | float32_transform() |
| featureunion__float32_transform_139955258811312__numpycolumnselector__columns | [1, 2, 3] |
| featureunion__float32_transform_139955258811312__compressstrings__activate_flag | True |
| featureunion__float32_transform_139955258811312__compressstrings__compress_type | hash |
| featureunion__float32_transform_139955258811312__compressstrings__dtypes_list | ['char_str', 'char_str', 'char_str'] |
| featureunion__float32_transform_139955258811312__compressstrings__missing_values_reference_list | ['', '-', '?', nan] |
| featureunion__float32_transform_139955258811312__compressstrings__misslist_list | [[], [], []] |
| featureunion__float32_transform_139955258811312__numpyreplacemissingvalues__filling_values | nan |
| featureunion__float32_transform_139955258811312__numpyreplacemissingvalues__missing_values | [] |
| featureunion__float32_transform_139955258811312__numpyreplaceunknownvalues__filling_values | nan |
| featureunion__float32_transform_139955258811312__numpyreplaceunknownvalues__filling_values_list | [nan, nan, nan] |
| featureunion__float32_transform_139955258811312__numpyreplaceunknownvalues__known_values_list | [[170172835760119224333519554008280666130, 140114708448418632577632402066430035116], [245397760256243238036686602120338271372, 87378989482499796866217412016778320776, 40061271003327253395033901872323469393], [245397760256243238036686602120338271372, 40061271003327253395033901872323469393]] |
| featureunion__float32_transform_139955258811312__numpyreplaceunknownvalues__missing_values_reference_list | ['', '-', '?', nan] |
| featureunion__float32_transform_139955258811312__boolean2float__activate_flag | True |
| featureunion__float32_transform_139955258811312__catimputer__activate_flag | True |
| featureunion__float32_transform_139955258811312__catimputer__missing_values | nan |
| featureunion__float32_transform_139955258811312__catimputer__sklearn_version_family | 1 |
| featureunion__float32_transform_139955258811312__catimputer__strategy | most_frequent |
| featureunion__float32_transform_139955258811312__catencoder__activate_flag | True |
| featureunion__float32_transform_139955258811312__catencoder__categories | auto |
| featureunion__float32_transform_139955258811312__catencoder__dtype | <class 'numpy.float64'> |
| featureunion__float32_transform_139955258811312__catencoder__encoding | ordinal |
| featureunion__float32_transform_139955258811312__catencoder__handle_unknown | error |
| featureunion__float32_transform_139955258811312__catencoder__sklearn_version_family | 1 |
| featureunion__float32_transform_139955258811312__float32_transform__activate_flag | True |
| featureunion__float32_transform_139955258809968__memory | |
| featureunion__float32_transform_139955258809968__steps | [('numpycolumnselector', NumpyColumnSelector(columns=[0, 4, 5])), ('floatstr2float', FloatStr2Float(dtypes_list=['float_int_num', 'float_num', 'float_num'],<br /> missing_values_reference_list=[])), ('numpyreplacemissingvalues', NumpyReplaceMissingValues(missing_values=[])), ('numimputer', NumImputer(missing_values=nan, strategy='median')), ('optstandardscaler', OptStandardScaler(use_scaler_flag=False)), ('float32_transform', float32_transform())] |
| featureunion__float32_transform_139955258809968__verbose | False |
| featureunion__float32_transform_139955258809968__numpycolumnselector | NumpyColumnSelector(columns=[0, 4, 5]) |
| featureunion__float32_transform_139955258809968__floatstr2float | FloatStr2Float(dtypes_list=['float_int_num', 'float_num', 'float_num'],<br /> missing_values_reference_list=[]) |
| featureunion__float32_transform_139955258809968__numpyreplacemissingvalues | NumpyReplaceMissingValues(missing_values=[]) |
| featureunion__float32_transform_139955258809968__numimputer | NumImputer(missing_values=nan, strategy='median') |
| featureunion__float32_transform_139955258809968__optstandardscaler | OptStandardScaler(use_scaler_flag=False) |
| featureunion__float32_transform_139955258809968__float32_transform | float32_transform() |
| featureunion__float32_transform_139955258809968__numpycolumnselector__columns | [0, 4, 5] |
| featureunion__float32_transform_139955258809968__floatstr2float__activate_flag | True |
| featureunion__float32_transform_139955258809968__floatstr2float__dtypes_list | ['float_int_num', 'float_num', 'float_num'] |
| featureunion__float32_transform_139955258809968__floatstr2float__missing_values_reference_list | [] |
| featureunion__float32_transform_139955258809968__numpyreplacemissingvalues__filling_values | nan |
| featureunion__float32_transform_139955258809968__numpyreplacemissingvalues__missing_values | [] |
| featureunion__float32_transform_139955258809968__numimputer__activate_flag | True |
| featureunion__float32_transform_139955258809968__numimputer__missing_values | nan |
| featureunion__float32_transform_139955258809968__numimputer__strategy | median |
| featureunion__float32_transform_139955258809968__optstandardscaler__use_scaler_flag | False |
| featureunion__float32_transform_139955258809968__float32_transform__activate_flag | True |
| numpypermutearray__axis | 0 |
| numpypermutearray__permutation_indices | [1, 2, 3, 0, 4, 5] |
| lgbmclassifier__boosting_type | gbdt |
| lgbmclassifier__class_weight | balanced |
| lgbmclassifier__colsample_bytree | 1.0 |
| lgbmclassifier__importance_type | split |
| lgbmclassifier__learning_rate | 0.1 |
| lgbmclassifier__max_depth | -1 |
| lgbmclassifier__min_child_samples | 20 |
| lgbmclassifier__min_child_weight | 0.001 |
| lgbmclassifier__min_split_gain | 0.0 |
| lgbmclassifier__n_estimators | 100 |
| lgbmclassifier__n_jobs | 1 |
| lgbmclassifier__num_leaves | 31 |
| lgbmclassifier__objective | |
| lgbmclassifier__random_state | 33 |
| lgbmclassifier__reg_alpha | 0.0 |
| lgbmclassifier__reg_lambda | 0.0 |
| lgbmclassifier__silent | warn |
| lgbmclassifier__subsample | 1.0 |
| lgbmclassifier__subsample_for_bin | 200000 |
| lgbmclassifier__subsample_freq | 0 |
</details>
### Model Plot
<style>#sk-container-id-3 {color: black;background-color: white;}#sk-container-id-3 pre{padding: 0;}#sk-container-id-3 div.sk-toggleable {background-color: white;}#sk-container-id-3 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-3 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-3 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-3 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-3 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-3 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-3 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-3 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-3 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-3 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-3 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-3 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-3 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-3 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-3 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-3 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-3 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-3 div.sk-item {position: relative;z-index: 1;}#sk-container-id-3 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-3 div.sk-item::before, #sk-container-id-3 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-3 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-3 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-3 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-3 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-3 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-3 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-3 div.sk-label-container {text-align: center;}#sk-container-id-3 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-3 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-3" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('featureunion',FeatureUnion(transformer_list=[('float32_transform_139955258811312',Pipeline(steps=[('numpycolumnselector',NumpyColumnSelector(columns=[1,2,3])),('compressstrings',CompressStrings(compress_type='hash',dtypes_list=['char_str','char_str','char_str'],missing_values_reference_list=['','-','?',nan],misslist_list=[[],[],[]...NumpyReplaceMissingValues(missing_values=[])),('numimputer',NumImputer(missing_values=nan,strategy='median')),('optstandardscaler',OptStandardScaler(use_scaler_flag=False)),('float32_transform',float32_transform())]))])),('numpypermutearray',NumpyPermuteArray(axis=0,permutation_indices=[1, 2, 3, 0, 4, 5])),('lgbmclassifier',LGBMClassifier(class_weight='balanced', n_jobs=1,random_state=33))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-37" type="checkbox" ><label for="sk-estimator-id-37" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[('featureunion',FeatureUnion(transformer_list=[('float32_transform_139955258811312',Pipeline(steps=[('numpycolumnselector',NumpyColumnSelector(columns=[1,2,3])),('compressstrings',CompressStrings(compress_type='hash',dtypes_list=['char_str','char_str','char_str'],missing_values_reference_list=['','-','?',nan],misslist_list=[[],[],[]...NumpyReplaceMissingValues(missing_values=[])),('numimputer',NumImputer(missing_values=nan,strategy='median')),('optstandardscaler',OptStandardScaler(use_scaler_flag=False)),('float32_transform',float32_transform())]))])),('numpypermutearray',NumpyPermuteArray(axis=0,permutation_indices=[1, 2, 3, 0, 4, 5])),('lgbmclassifier',LGBMClassifier(class_weight='balanced', n_jobs=1,random_state=33))])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-38" type="checkbox" ><label for="sk-estimator-id-38" class="sk-toggleable__label sk-toggleable__label-arrow">featureunion: FeatureUnion</label><div class="sk-toggleable__content"><pre>FeatureUnion(transformer_list=[('float32_transform_139955258811312',Pipeline(steps=[('numpycolumnselector',NumpyColumnSelector(columns=[1,2,3])),('compressstrings',CompressStrings(compress_type='hash',dtypes_list=['char_str','char_str','char_str'],missing_values_reference_list=['','-','?',nan],misslist_list=[[],[],[]])),('numpyreplacemissingvalues'...FloatStr2Float(dtypes_list=['float_int_num','float_num','float_num'],missing_values_reference_list=[])),('numpyreplacemissingvalues',NumpyReplaceMissingValues(missing_values=[])),('numimputer',NumImputer(missing_values=nan,strategy='median')),('optstandardscaler',OptStandardScaler(use_scaler_flag=False)),('float32_transform',float32_transform())]))])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><label>float32_transform_139955258811312</label></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-39" type="checkbox" ><label for="sk-estimator-id-39" class="sk-toggleable__label sk-toggleable__label-arrow">NumpyColumnSelector</label><div class="sk-toggleable__content"><pre>NumpyColumnSelector(columns=[1, 2, 3])</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-40" type="checkbox" ><label for="sk-estimator-id-40" class="sk-toggleable__label sk-toggleable__label-arrow">CompressStrings</label><div class="sk-toggleable__content"><pre>CompressStrings(compress_type='hash',dtypes_list=['char_str', 'char_str', 'char_str'],missing_values_reference_list=['', '-', '?', nan],misslist_list=[[], [], []])</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-41" type="checkbox" ><label for="sk-estimator-id-41" class="sk-toggleable__label sk-toggleable__label-arrow">NumpyReplaceMissingValues</label><div class="sk-toggleable__content"><pre>NumpyReplaceMissingValues(missing_values=[])</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-42" type="checkbox" ><label for="sk-estimator-id-42" class="sk-toggleable__label sk-toggleable__label-arrow">NumpyReplaceUnknownValues</label><div class="sk-toggleable__content"><pre>NumpyReplaceUnknownValues(filling_values=nan,filling_values_list=[nan, nan, nan],known_values_list=[[170172835760119224333519554008280666130,140114708448418632577632402066430035116],[245397760256243238036686602120338271372,87378989482499796866217412016778320776,40061271003327253395033901872323469393],[245397760256243238036686602120338271372,40061271003327253395033901872323469393]],missing_values_reference_list=['', '-', '?', nan])</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-43" type="checkbox" ><label for="sk-estimator-id-43" class="sk-toggleable__label sk-toggleable__label-arrow">boolean2float</label><div class="sk-toggleable__content"><pre>boolean2float()</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-44" type="checkbox" ><label for="sk-estimator-id-44" class="sk-toggleable__label sk-toggleable__label-arrow">CatImputer</label><div class="sk-toggleable__content"><pre>CatImputer(missing_values=nan, strategy='most_frequent')</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-45" type="checkbox" ><label for="sk-estimator-id-45" class="sk-toggleable__label sk-toggleable__label-arrow">CatEncoder</label><div class="sk-toggleable__content"><pre>CatEncoder(categories='auto', dtype=<class 'numpy.float64'>, encoding='ordinal',handle_unknown='error')</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-46" type="checkbox" ><label for="sk-estimator-id-46" class="sk-toggleable__label sk-toggleable__label-arrow">float32_transform</label><div class="sk-toggleable__content"><pre>float32_transform()</pre></div></div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><label>float32_transform_139955258809968</label></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-47" type="checkbox" ><label for="sk-estimator-id-47" class="sk-toggleable__label sk-toggleable__label-arrow">NumpyColumnSelector</label><div class="sk-toggleable__content"><pre>NumpyColumnSelector(columns=[0, 4, 5])</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-48" type="checkbox" ><label for="sk-estimator-id-48" class="sk-toggleable__label sk-toggleable__label-arrow">FloatStr2Float</label><div class="sk-toggleable__content"><pre>FloatStr2Float(dtypes_list=['float_int_num', 'float_num', 'float_num'],missing_values_reference_list=[])</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-49" type="checkbox" ><label for="sk-estimator-id-49" class="sk-toggleable__label sk-toggleable__label-arrow">NumpyReplaceMissingValues</label><div class="sk-toggleable__content"><pre>NumpyReplaceMissingValues(missing_values=[])</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-50" type="checkbox" ><label for="sk-estimator-id-50" class="sk-toggleable__label sk-toggleable__label-arrow">NumImputer</label><div class="sk-toggleable__content"><pre>NumImputer(missing_values=nan, strategy='median')</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-51" type="checkbox" ><label for="sk-estimator-id-51" class="sk-toggleable__label sk-toggleable__label-arrow">OptStandardScaler</label><div class="sk-toggleable__content"><pre>OptStandardScaler(use_scaler_flag=False)</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-52" type="checkbox" ><label for="sk-estimator-id-52" class="sk-toggleable__label sk-toggleable__label-arrow">float32_transform</label><div class="sk-toggleable__content"><pre>float32_transform()</pre></div></div></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-53" type="checkbox" ><label for="sk-estimator-id-53" class="sk-toggleable__label sk-toggleable__label-arrow">NumpyPermuteArray</label><div class="sk-toggleable__content"><pre>NumpyPermuteArray(axis=0, permutation_indices=[1, 2, 3, 0, 4, 5])</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-54" type="checkbox" ><label for="sk-estimator-id-54" class="sk-toggleable__label sk-toggleable__label-arrow">LGBMClassifier</label><div class="sk-toggleable__content"><pre>LGBMClassifier(class_weight='balanced', n_jobs=1, random_state=33)</pre></div></div></div></div></div></div></div>
## Evaluation Results
[More Information Needed]
# How to Get Started with the Model
[More Information Needed]
# Model Card Authors
This model card is written by following authors:
[More Information Needed]
# Model Card Contact
You can contact the model card authors through following channels:
[More Information Needed]
# Citation
Below you can find information related to citation.
**BibTeX:**
```
[More Information Needed]
```
# model_card_authors
wenpei
# model_description
test propose for autoai and hugging face
|