--- library_name: sklearn tags: - sklearn - skops - tabular-classification model_format: pickle model_file: pipeline_model_sklearn.joblib widget: - structuredData: Age: - 23 - 47 - 47 BP: - HIGH - LOW - LOW Cholesterol: - HIGH - HIGH - HIGH K: - 0.031258 - 0.056468 - 0.068944 Na: - 0.792535 - 0.739309 - 0.697269 Sex: - F - M - M --- # Model description [More Information Needed] ## Intended uses & limitations [More Information Needed] ## Training Procedure [More Information Needed] ### Hyperparameters
Click to expand | Hyperparameter | Value | |-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | memory | | | steps | [('featureunion', FeatureUnion(transformer_list=[('float32_transform_139955258811312',
Pipeline(steps=[('numpycolumnselector',
NumpyColumnSelector(columns=[1,
2,
3])),
('compressstrings',
CompressStrings(compress_type='hash',
dtypes_list=['char_str',
'char_str',
'char_str'],
missing_values_reference_list=['',
'-',
'?',
nan],
misslist_list=[[],
[],
[]])),
('numpyreplacemissingvalues'...
FloatStr2Float(dtypes_list=['float_int_num',
'float_num',
'float_num'],
missing_values_reference_list=[])),
('numpyreplacemissingvalues',
NumpyReplaceMissingValues(missing_values=[])),
('numimputer',
NumImputer(missing_values=nan,
strategy='median')),
('optstandardscaler',
OptStandardScaler(use_scaler_flag=False)),
('float32_transform',
float32_transform())]))])), ('numpypermutearray', NumpyPermuteArray(axis=0, permutation_indices=[1, 2, 3, 0, 4, 5])), ('lgbmclassifier', LGBMClassifier(class_weight='balanced', n_jobs=1, random_state=33))] | | verbose | False | | featureunion | FeatureUnion(transformer_list=[('float32_transform_139955258811312',
Pipeline(steps=[('numpycolumnselector',
NumpyColumnSelector(columns=[1,
2,
3])),
('compressstrings',
CompressStrings(compress_type='hash',
dtypes_list=['char_str',
'char_str',
'char_str'],
missing_values_reference_list=['',
'-',
'?',
nan],
misslist_list=[[],
[],
[]])),
('numpyreplacemissingvalues'...
FloatStr2Float(dtypes_list=['float_int_num',
'float_num',
'float_num'],
missing_values_reference_list=[])),
('numpyreplacemissingvalues',
NumpyReplaceMissingValues(missing_values=[])),
('numimputer',
NumImputer(missing_values=nan,
strategy='median')),
('optstandardscaler',
OptStandardScaler(use_scaler_flag=False)),
('float32_transform',
float32_transform())]))]) | | numpypermutearray | NumpyPermuteArray(axis=0, permutation_indices=[1, 2, 3, 0, 4, 5]) | | lgbmclassifier | LGBMClassifier(class_weight='balanced', n_jobs=1, random_state=33) | | featureunion__n_jobs | | | featureunion__transformer_list | [('float32_transform_139955258811312', Pipeline(steps=[('numpycolumnselector', NumpyColumnSelector(columns=[1, 2, 3])),
('compressstrings',
CompressStrings(compress_type='hash',
dtypes_list=['char_str', 'char_str',
'char_str'],
missing_values_reference_list=['', '-', '?',
nan],
misslist_list=[[], [], []])),
('numpyreplacemissingvalues',
NumpyReplaceMissingValues(missing_values=[])),
('numpyreplaceunknown...
40061271003327253395033901872323469393]],
missing_values_reference_list=['',
'-',
'?',
nan])),
('boolean2float', boolean2float()),
('catimputer',
CatImputer(missing_values=nan, strategy='most_frequent')),
('catencoder',
CatEncoder(categories='auto', dtype=,
encoding='ordinal', handle_unknown='error')),
('float32_transform', float32_transform())])), ('float32_transform_139955258809968', Pipeline(steps=[('numpycolumnselector', NumpyColumnSelector(columns=[0, 4, 5])),
('floatstr2float',
FloatStr2Float(dtypes_list=['float_int_num', 'float_num',
'float_num'],
missing_values_reference_list=[])),
('numpyreplacemissingvalues',
NumpyReplaceMissingValues(missing_values=[])),
('numimputer',
NumImputer(missing_values=nan, strategy='median')),
('optstandardscaler', OptStandardScaler(use_scaler_flag=False)),
('float32_transform', float32_transform())]))] | | featureunion__transformer_weights | | | featureunion__verbose | False | | featureunion__float32_transform_139955258811312 | Pipeline(steps=[('numpycolumnselector', NumpyColumnSelector(columns=[1, 2, 3])),
('compressstrings',
CompressStrings(compress_type='hash',
dtypes_list=['char_str', 'char_str',
'char_str'],
missing_values_reference_list=['', '-', '?',
nan],
misslist_list=[[], [], []])),
('numpyreplacemissingvalues',
NumpyReplaceMissingValues(missing_values=[])),
('numpyreplaceunknown...
40061271003327253395033901872323469393]],
missing_values_reference_list=['',
'-',
'?',
nan])),
('boolean2float', boolean2float()),
('catimputer',
CatImputer(missing_values=nan, strategy='most_frequent')),
('catencoder',
CatEncoder(categories='auto', dtype=,
encoding='ordinal', handle_unknown='error')),
('float32_transform', float32_transform())]) | | featureunion__float32_transform_139955258809968 | Pipeline(steps=[('numpycolumnselector', NumpyColumnSelector(columns=[0, 4, 5])),
('floatstr2float',
FloatStr2Float(dtypes_list=['float_int_num', 'float_num',
'float_num'],
missing_values_reference_list=[])),
('numpyreplacemissingvalues',
NumpyReplaceMissingValues(missing_values=[])),
('numimputer',
NumImputer(missing_values=nan, strategy='median')),
('optstandardscaler', OptStandardScaler(use_scaler_flag=False)),
('float32_transform', float32_transform())]) | | featureunion__float32_transform_139955258811312__memory | | | featureunion__float32_transform_139955258811312__steps | [('numpycolumnselector', NumpyColumnSelector(columns=[1, 2, 3])), ('compressstrings', CompressStrings(compress_type='hash',
dtypes_list=['char_str', 'char_str', 'char_str'],
missing_values_reference_list=['', '-', '?', nan],
misslist_list=[[], [], []])), ('numpyreplacemissingvalues', NumpyReplaceMissingValues(missing_values=[])), ('numpyreplaceunknownvalues', NumpyReplaceUnknownValues(filling_values=nan,
filling_values_list=[nan, nan, nan],
known_values_list=[[170172835760119224333519554008280666130,
140114708448418632577632402066430035116],
[245397760256243238036686602120338271372,
87378989482499796866217412016778320776,
40061271003327253395033901872323469393],
[245397760256243238036686602120338271372,
40061271003327253395033901872323469393]],
missing_values_reference_list=['', '-', '?', nan])), ('boolean2float', boolean2float()), ('catimputer', CatImputer(missing_values=nan, strategy='most_frequent')), ('catencoder', CatEncoder(categories='auto', dtype=, encoding='ordinal',
handle_unknown='error')), ('float32_transform', float32_transform())] | | featureunion__float32_transform_139955258811312__verbose | False | | featureunion__float32_transform_139955258811312__numpycolumnselector | NumpyColumnSelector(columns=[1, 2, 3]) | | featureunion__float32_transform_139955258811312__compressstrings | CompressStrings(compress_type='hash',
dtypes_list=['char_str', 'char_str', 'char_str'],
missing_values_reference_list=['', '-', '?', nan],
misslist_list=[[], [], []]) | | featureunion__float32_transform_139955258811312__numpyreplacemissingvalues | NumpyReplaceMissingValues(missing_values=[]) | | featureunion__float32_transform_139955258811312__numpyreplaceunknownvalues | NumpyReplaceUnknownValues(filling_values=nan,
filling_values_list=[nan, nan, nan],
known_values_list=[[170172835760119224333519554008280666130,
140114708448418632577632402066430035116],
[245397760256243238036686602120338271372,
87378989482499796866217412016778320776,
40061271003327253395033901872323469393],
[245397760256243238036686602120338271372,
40061271003327253395033901872323469393]],
missing_values_reference_list=['', '-', '?', nan]) | | featureunion__float32_transform_139955258811312__boolean2float | boolean2float() | | featureunion__float32_transform_139955258811312__catimputer | CatImputer(missing_values=nan, strategy='most_frequent') | | featureunion__float32_transform_139955258811312__catencoder | CatEncoder(categories='auto', dtype=, encoding='ordinal',
handle_unknown='error') | | featureunion__float32_transform_139955258811312__float32_transform | float32_transform() | | featureunion__float32_transform_139955258811312__numpycolumnselector__columns | [1, 2, 3] | | featureunion__float32_transform_139955258811312__compressstrings__activate_flag | True | | featureunion__float32_transform_139955258811312__compressstrings__compress_type | hash | | featureunion__float32_transform_139955258811312__compressstrings__dtypes_list | ['char_str', 'char_str', 'char_str'] | | featureunion__float32_transform_139955258811312__compressstrings__missing_values_reference_list | ['', '-', '?', nan] | | featureunion__float32_transform_139955258811312__compressstrings__misslist_list | [[], [], []] | | featureunion__float32_transform_139955258811312__numpyreplacemissingvalues__filling_values | nan | | featureunion__float32_transform_139955258811312__numpyreplacemissingvalues__missing_values | [] | | featureunion__float32_transform_139955258811312__numpyreplaceunknownvalues__filling_values | nan | | featureunion__float32_transform_139955258811312__numpyreplaceunknownvalues__filling_values_list | [nan, nan, nan] | | featureunion__float32_transform_139955258811312__numpyreplaceunknownvalues__known_values_list | [[170172835760119224333519554008280666130, 140114708448418632577632402066430035116], [245397760256243238036686602120338271372, 87378989482499796866217412016778320776, 40061271003327253395033901872323469393], [245397760256243238036686602120338271372, 40061271003327253395033901872323469393]] | | featureunion__float32_transform_139955258811312__numpyreplaceunknownvalues__missing_values_reference_list | ['', '-', '?', nan] | | featureunion__float32_transform_139955258811312__boolean2float__activate_flag | True | | featureunion__float32_transform_139955258811312__catimputer__activate_flag | True | | featureunion__float32_transform_139955258811312__catimputer__missing_values | nan | | featureunion__float32_transform_139955258811312__catimputer__sklearn_version_family | 1 | | featureunion__float32_transform_139955258811312__catimputer__strategy | most_frequent | | featureunion__float32_transform_139955258811312__catencoder__activate_flag | True | | featureunion__float32_transform_139955258811312__catencoder__categories | auto | | featureunion__float32_transform_139955258811312__catencoder__dtype | | | featureunion__float32_transform_139955258811312__catencoder__encoding | ordinal | | featureunion__float32_transform_139955258811312__catencoder__handle_unknown | error | | featureunion__float32_transform_139955258811312__catencoder__sklearn_version_family | 1 | | featureunion__float32_transform_139955258811312__float32_transform__activate_flag | True | | featureunion__float32_transform_139955258809968__memory | | | featureunion__float32_transform_139955258809968__steps | [('numpycolumnselector', NumpyColumnSelector(columns=[0, 4, 5])), ('floatstr2float', FloatStr2Float(dtypes_list=['float_int_num', 'float_num', 'float_num'],
missing_values_reference_list=[])), ('numpyreplacemissingvalues', NumpyReplaceMissingValues(missing_values=[])), ('numimputer', NumImputer(missing_values=nan, strategy='median')), ('optstandardscaler', OptStandardScaler(use_scaler_flag=False)), ('float32_transform', float32_transform())] | | featureunion__float32_transform_139955258809968__verbose | False | | featureunion__float32_transform_139955258809968__numpycolumnselector | NumpyColumnSelector(columns=[0, 4, 5]) | | featureunion__float32_transform_139955258809968__floatstr2float | FloatStr2Float(dtypes_list=['float_int_num', 'float_num', 'float_num'],
missing_values_reference_list=[]) | | featureunion__float32_transform_139955258809968__numpyreplacemissingvalues | NumpyReplaceMissingValues(missing_values=[]) | | featureunion__float32_transform_139955258809968__numimputer | NumImputer(missing_values=nan, strategy='median') | | featureunion__float32_transform_139955258809968__optstandardscaler | OptStandardScaler(use_scaler_flag=False) | | featureunion__float32_transform_139955258809968__float32_transform | float32_transform() | | featureunion__float32_transform_139955258809968__numpycolumnselector__columns | [0, 4, 5] | | featureunion__float32_transform_139955258809968__floatstr2float__activate_flag | True | | featureunion__float32_transform_139955258809968__floatstr2float__dtypes_list | ['float_int_num', 'float_num', 'float_num'] | | featureunion__float32_transform_139955258809968__floatstr2float__missing_values_reference_list | [] | | featureunion__float32_transform_139955258809968__numpyreplacemissingvalues__filling_values | nan | | featureunion__float32_transform_139955258809968__numpyreplacemissingvalues__missing_values | [] | | featureunion__float32_transform_139955258809968__numimputer__activate_flag | True | | featureunion__float32_transform_139955258809968__numimputer__missing_values | nan | | featureunion__float32_transform_139955258809968__numimputer__strategy | median | | featureunion__float32_transform_139955258809968__optstandardscaler__use_scaler_flag | False | | featureunion__float32_transform_139955258809968__float32_transform__activate_flag | True | | numpypermutearray__axis | 0 | | numpypermutearray__permutation_indices | [1, 2, 3, 0, 4, 5] | | lgbmclassifier__boosting_type | gbdt | | lgbmclassifier__class_weight | balanced | | lgbmclassifier__colsample_bytree | 1.0 | | lgbmclassifier__importance_type | split | | lgbmclassifier__learning_rate | 0.1 | | lgbmclassifier__max_depth | -1 | | lgbmclassifier__min_child_samples | 20 | | lgbmclassifier__min_child_weight | 0.001 | | lgbmclassifier__min_split_gain | 0.0 | | lgbmclassifier__n_estimators | 100 | | lgbmclassifier__n_jobs | 1 | | lgbmclassifier__num_leaves | 31 | | lgbmclassifier__objective | | | lgbmclassifier__random_state | 33 | | lgbmclassifier__reg_alpha | 0.0 | | lgbmclassifier__reg_lambda | 0.0 | | lgbmclassifier__silent | warn | | lgbmclassifier__subsample | 1.0 | | lgbmclassifier__subsample_for_bin | 200000 | | lgbmclassifier__subsample_freq | 0 |
### Model Plot
Pipeline(steps=[('featureunion',FeatureUnion(transformer_list=[('float32_transform_139955258811312',Pipeline(steps=[('numpycolumnselector',NumpyColumnSelector(columns=[1,2,3])),('compressstrings',CompressStrings(compress_type='hash',dtypes_list=['char_str','char_str','char_str'],missing_values_reference_list=['','-','?',nan],misslist_list=[[],[],[]...NumpyReplaceMissingValues(missing_values=[])),('numimputer',NumImputer(missing_values=nan,strategy='median')),('optstandardscaler',OptStandardScaler(use_scaler_flag=False)),('float32_transform',float32_transform())]))])),('numpypermutearray',NumpyPermuteArray(axis=0,permutation_indices=[1, 2, 3, 0, 4, 5])),('lgbmclassifier',LGBMClassifier(class_weight='balanced', n_jobs=1,random_state=33))])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
## Evaluation Results [More Information Needed] # How to Get Started with the Model [More Information Needed] # Model Card Authors This model card is written by following authors: [More Information Needed] # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` [More Information Needed] ``` # model_card_authors wenpei # model_description test propose for autoai and hugging face