upload model, lexicon and log
Browse files- .gitattributes +1 -0
- data/lang_bpe_500/HLG.pt +3 -0
- data/lang_bpe_500/L.pt +3 -0
- data/lang_bpe_500/L_disambig.pt +3 -0
- data/lang_bpe_500/Linv.pt +3 -0
- data/lang_bpe_500/P.arpa +0 -0
- data/lang_bpe_500/P.fst.txt +3 -0
- data/lang_bpe_500/bpe.model +3 -0
- data/lang_bpe_500/lexicon.txt +3 -0
- data/lang_bpe_500/lexicon_disambig.txt +3 -0
- data/lang_bpe_500/tokens.txt +3 -0
- data/lang_bpe_500/transcript_tokens.txt +3 -0
- data/lang_bpe_500/transcript_words.txt +3 -0
- data/lang_bpe_500/unigram_500.model +3 -0
- data/lang_bpe_500/unigram_500.vocab +500 -0
- data/lang_bpe_500/words.txt +3 -0
- data/lm/G_4_gram.pt +3 -0
- exp/cpu_jit.pt +3 -0
- exp/pretrained.pt +3 -0
- log/log-decode-2022-04-08-22-02-12 +778 -0
- log/log-decode-2022-04-09-01-40-41 +1176 -0
.gitattributes
CHANGED
@@ -26,3 +26,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
26 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
27 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
28 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
26 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
27 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
28 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.txt filter=lfs diff=lfs merge=lfs -text
|
data/lang_bpe_500/HLG.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:456cf93a8085c04b5562eaa0b7ea93677e261afa3fe67f39f39e3b150d73402b
|
3 |
+
size 504576927
|
data/lang_bpe_500/L.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be1fe4e2d70b3bec970a7bc737895e2d86f9a847fbf1ab9b3c013c5d9d5fe54f
|
3 |
+
size 45300967
|
data/lang_bpe_500/L_disambig.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b5b54665ac47e1b999e2ecd43ac0d56c662bb65fc7c0926d8c602c15ff19bac
|
3 |
+
size 46950503
|
data/lang_bpe_500/Linv.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f474dfccce72cd2b0e11c98f808212ccac396025d9ea9fc396ebd607b66dae53
|
3 |
+
size 45300967
|
data/lang_bpe_500/P.arpa
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/lang_bpe_500/P.fst.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e29392f10149001b141ed7eb71f6ef2d4415cee80b9de508f5d57faf7f1a0d76
|
3 |
+
size 3857427
|
data/lang_bpe_500/bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bcae393dbc5611be5ffa4c7ae0841558978a5a4f484008cb9dff3a2cc97ebe01
|
3 |
+
size 244836
|
data/lang_bpe_500/lexicon.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d938da3733725009af4758207ebec5f12335d4f84bf42fc7757140cd6edc87bd
|
3 |
+
size 11120754
|
data/lang_bpe_500/lexicon_disambig.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d4dfa97c8e771cb39ba9d775559854238a858e25ede5ca5031f6d20c111a6b7
|
3 |
+
size 11368176
|
data/lang_bpe_500/tokens.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ff15a58ee60af64de84c98e3d6a1cc2318f384bc7c84ddb8dc277ea4f3ac4f5
|
3 |
+
size 5019
|
data/lang_bpe_500/transcript_tokens.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e1ab14de896b234d6fbc317da7760214907bd92656c605bd8b121c14e8a09d2
|
3 |
+
size 990859978
|
data/lang_bpe_500/transcript_words.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0146610da4fcf115995dac855f9826f1c918993e8dc022b0b33dd210fd2ac682
|
3 |
+
size 577903494
|
data/lang_bpe_500/unigram_500.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bcae393dbc5611be5ffa4c7ae0841558978a5a4f484008cb9dff3a2cc97ebe01
|
3 |
+
size 244836
|
data/lang_bpe_500/unigram_500.vocab
ADDED
@@ -0,0 +1,500 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<blk> 0
|
2 |
+
<sos/eos> 0
|
3 |
+
<unk> 0
|
4 |
+
S -2.91936
|
5 |
+
T -3.62226
|
6 |
+
▁THE -3.63907
|
7 |
+
▁A -3.91998
|
8 |
+
E -3.9774
|
9 |
+
▁AND -4.03888
|
10 |
+
▁TO -4.11528
|
11 |
+
N -4.13926
|
12 |
+
D -4.23828
|
13 |
+
▁OF -4.26126
|
14 |
+
' -4.32705
|
15 |
+
ING -4.36266
|
16 |
+
▁I -4.43026
|
17 |
+
Y -4.47664
|
18 |
+
▁IN -4.5039
|
19 |
+
ED -4.56388
|
20 |
+
▁THAT -4.56493
|
21 |
+
▁ -4.61161
|
22 |
+
P -4.68867
|
23 |
+
R -4.69194
|
24 |
+
▁YOU -4.70013
|
25 |
+
M -4.73468
|
26 |
+
RE -4.77896
|
27 |
+
ER -4.79222
|
28 |
+
C -4.80441
|
29 |
+
O -4.84437
|
30 |
+
▁IT -4.84599
|
31 |
+
L -4.92876
|
32 |
+
A -5.01304
|
33 |
+
U -5.04339
|
34 |
+
G -5.07981
|
35 |
+
▁WE -5.15716
|
36 |
+
▁IS -5.16592
|
37 |
+
▁SO -5.20473
|
38 |
+
AL -5.20761
|
39 |
+
I -5.20892
|
40 |
+
▁S -5.21941
|
41 |
+
▁RE -5.25961
|
42 |
+
AR -5.26464
|
43 |
+
B -5.27126
|
44 |
+
▁FOR -5.28788
|
45 |
+
▁C -5.28918
|
46 |
+
▁BE -5.30209
|
47 |
+
LE -5.3038
|
48 |
+
F -5.31727
|
49 |
+
W -5.3626
|
50 |
+
▁E -5.39058
|
51 |
+
▁HE -5.3984
|
52 |
+
LL -5.39936
|
53 |
+
▁WAS -5.41947
|
54 |
+
LY -5.41982
|
55 |
+
OR -5.451
|
56 |
+
IN -5.51245
|
57 |
+
▁F -5.51686
|
58 |
+
VE -5.54551
|
59 |
+
▁THIS -5.54604
|
60 |
+
TH -5.55438
|
61 |
+
K -5.59782
|
62 |
+
▁ON -5.60492
|
63 |
+
IT -5.63051
|
64 |
+
▁B -5.64315
|
65 |
+
▁WITH -5.6692
|
66 |
+
▁BUT -5.69372
|
67 |
+
EN -5.69464
|
68 |
+
CE -5.70105
|
69 |
+
RI -5.74079
|
70 |
+
▁DO -5.75023
|
71 |
+
UR -5.75089
|
72 |
+
▁HAVE -5.75784
|
73 |
+
▁DE -5.78198
|
74 |
+
▁ME -5.78744
|
75 |
+
▁T -5.79218
|
76 |
+
ENT -5.84937
|
77 |
+
CH -5.86931
|
78 |
+
▁THEY -5.8741
|
79 |
+
▁NOT -5.88022
|
80 |
+
ES -5.90245
|
81 |
+
V -5.90528
|
82 |
+
▁AS -5.90745
|
83 |
+
RA -5.91436
|
84 |
+
▁P -5.91784
|
85 |
+
ON -5.91788
|
86 |
+
TER -5.92587
|
87 |
+
▁ARE -5.94781
|
88 |
+
▁WHAT -5.95664
|
89 |
+
IC -5.96785
|
90 |
+
▁ST -5.97911
|
91 |
+
▁LIKE -6.02232
|
92 |
+
ATION -6.04962
|
93 |
+
▁OR -6.05223
|
94 |
+
▁CA -6.05876
|
95 |
+
▁AT -6.0815
|
96 |
+
H -6.08965
|
97 |
+
▁KNOW -6.09389
|
98 |
+
▁G -6.09914
|
99 |
+
AN -6.10082
|
100 |
+
▁CON -6.1086
|
101 |
+
IL -6.12259
|
102 |
+
ND -6.12748
|
103 |
+
RO -6.13926
|
104 |
+
▁HIS -6.1401
|
105 |
+
▁CAN -6.14445
|
106 |
+
▁ALL -6.14626
|
107 |
+
TE -6.15654
|
108 |
+
▁THERE -6.16263
|
109 |
+
▁SU -6.18963
|
110 |
+
▁MO -6.19822
|
111 |
+
▁MA -6.21735
|
112 |
+
LI -6.24568
|
113 |
+
▁ONE -6.25177
|
114 |
+
▁ABOUT -6.253
|
115 |
+
LA -6.25309
|
116 |
+
▁CO -6.25588
|
117 |
+
- -6.26085
|
118 |
+
▁MY -6.27134
|
119 |
+
▁HAD -6.2739
|
120 |
+
CK -6.27737
|
121 |
+
NG -6.2891
|
122 |
+
▁NO -6.29472
|
123 |
+
MENT -6.30738
|
124 |
+
AD -6.31071
|
125 |
+
LO -6.31339
|
126 |
+
ME -6.3139
|
127 |
+
▁AN -6.31782
|
128 |
+
▁FROM -6.3267
|
129 |
+
NE -6.32822
|
130 |
+
▁IF -6.3309
|
131 |
+
VER -6.33734
|
132 |
+
▁JUST -6.34705
|
133 |
+
▁PRO -6.38157
|
134 |
+
ION -6.38203
|
135 |
+
▁PA -6.38311
|
136 |
+
▁WHO -6.389
|
137 |
+
▁SE -6.39145
|
138 |
+
EL -6.39577
|
139 |
+
IR -6.39902
|
140 |
+
▁US -6.40366
|
141 |
+
▁UP -6.40929
|
142 |
+
▁YOUR -6.41111
|
143 |
+
CI -6.41571
|
144 |
+
RY -6.42878
|
145 |
+
▁GO -6.43225
|
146 |
+
▁SHE -6.44576
|
147 |
+
▁LE -6.45467
|
148 |
+
▁OUT -6.4618
|
149 |
+
▁PO -6.46959
|
150 |
+
▁HO -6.47283
|
151 |
+
ATE -6.48248
|
152 |
+
▁BO -6.48598
|
153 |
+
▁BY -6.48743
|
154 |
+
▁FA -6.48779
|
155 |
+
▁MI -6.48972
|
156 |
+
AS -6.49552
|
157 |
+
MP -6.50825
|
158 |
+
▁HER -6.51444
|
159 |
+
VI -6.51584
|
160 |
+
▁THINK -6.51821
|
161 |
+
▁SOME -6.51966
|
162 |
+
▁WHEN -6.53955
|
163 |
+
▁AH -6.54789
|
164 |
+
▁PEOPLE -6.56579
|
165 |
+
IG -6.56619
|
166 |
+
▁WA -6.58446
|
167 |
+
▁TE -6.58708
|
168 |
+
▁LA -6.5924
|
169 |
+
▁WERE -6.59558
|
170 |
+
▁LI -6.59617
|
171 |
+
▁WOULD -6.60333
|
172 |
+
▁SEE -6.60421
|
173 |
+
▁WHICH -6.60769
|
174 |
+
DE -6.61146
|
175 |
+
GE -6.61214
|
176 |
+
▁K -6.61725
|
177 |
+
IGHT -6.63987
|
178 |
+
▁HA -6.64097
|
179 |
+
▁OUR -6.67441
|
180 |
+
UN -6.67953
|
181 |
+
▁HOW -6.68709
|
182 |
+
▁GET -6.6874
|
183 |
+
IS -6.69453
|
184 |
+
UT -6.70334
|
185 |
+
Z -6.70922
|
186 |
+
CO -6.71316
|
187 |
+
ET -6.71592
|
188 |
+
UL -6.71664
|
189 |
+
IES -6.72788
|
190 |
+
IVE -6.73038
|
191 |
+
AT -6.73107
|
192 |
+
▁O -6.73302
|
193 |
+
▁DON -6.73526
|
194 |
+
LU -6.73936
|
195 |
+
▁TIME -6.74787
|
196 |
+
▁WILL -6.75714
|
197 |
+
▁MORE -6.75772
|
198 |
+
▁SP -6.75795
|
199 |
+
▁NOW -6.76281
|
200 |
+
RU -6.76441
|
201 |
+
▁THEIR -6.76701
|
202 |
+
▁UN -6.77337
|
203 |
+
ITY -6.78846
|
204 |
+
OL -6.78991
|
205 |
+
X -6.79216
|
206 |
+
TI -6.79565
|
207 |
+
US -6.79815
|
208 |
+
▁VERY -6.81318
|
209 |
+
TION -6.81516
|
210 |
+
▁FI -6.81739
|
211 |
+
▁SAY -6.81764
|
212 |
+
▁BECAUSE -6.83879
|
213 |
+
▁EX -6.83974
|
214 |
+
▁RO -6.84322
|
215 |
+
ERS -6.8685
|
216 |
+
IST -6.87091
|
217 |
+
▁DA -6.87303
|
218 |
+
TING -6.87408
|
219 |
+
▁EN -6.88514
|
220 |
+
OM -6.88529
|
221 |
+
▁BA -6.8895
|
222 |
+
▁BEEN -6.89199
|
223 |
+
▁LO -6.89575
|
224 |
+
▁UM -6.89988
|
225 |
+
AGE -6.9046
|
226 |
+
ABLE -6.90556
|
227 |
+
▁WO -6.90762
|
228 |
+
▁RA -6.90807
|
229 |
+
▁OTHER -6.92762
|
230 |
+
▁REALLY -6.92772
|
231 |
+
ENCE -6.93464
|
232 |
+
▁GOING -6.93644
|
233 |
+
▁HIM -6.93782
|
234 |
+
▁HAS -6.9382
|
235 |
+
▁THEM -6.93852
|
236 |
+
▁DIS -6.94051
|
237 |
+
▁WANT -6.94824
|
238 |
+
ID -6.95197
|
239 |
+
TA -6.95466
|
240 |
+
▁LOOK -6.95859
|
241 |
+
KE -6.96683
|
242 |
+
▁DID -6.96973
|
243 |
+
▁SA -6.97504
|
244 |
+
▁VI -6.97815
|
245 |
+
▁SAID -6.98116
|
246 |
+
▁RIGHT -6.98233
|
247 |
+
▁THESE -6.98239
|
248 |
+
▁WORK -6.98267
|
249 |
+
▁COM -7.00591
|
250 |
+
ALLY -7.02101
|
251 |
+
FF -7.02191
|
252 |
+
QU -7.02982
|
253 |
+
AC -7.032
|
254 |
+
▁DR -7.03706
|
255 |
+
▁WAY -7.03766
|
256 |
+
▁INTO -7.04973
|
257 |
+
MO -7.05136
|
258 |
+
TED -7.05518
|
259 |
+
EST -7.06036
|
260 |
+
▁HERE -7.06279
|
261 |
+
OK -7.06659
|
262 |
+
▁COULD -7.07484
|
263 |
+
▁WELL -7.07681
|
264 |
+
MA -7.0798
|
265 |
+
▁PRE -7.08375
|
266 |
+
▁DI -7.08411
|
267 |
+
MAN -7.09183
|
268 |
+
▁COMP -7.09251
|
269 |
+
▁THEN -7.09311
|
270 |
+
IM -7.09454
|
271 |
+
▁PER -7.09471
|
272 |
+
▁NA -7.09814
|
273 |
+
▁WHERE -7.0995
|
274 |
+
▁TWO -7.10374
|
275 |
+
▁WI -7.10433
|
276 |
+
▁FE -7.12258
|
277 |
+
INE -7.13542
|
278 |
+
▁ANY -7.13685
|
279 |
+
TURE -7.13787
|
280 |
+
▁OVER -7.13806
|
281 |
+
BO -7.1436
|
282 |
+
ACH -7.15075
|
283 |
+
OW -7.16294
|
284 |
+
▁MAKE -7.16967
|
285 |
+
▁TRA -7.17924
|
286 |
+
HE -7.19414
|
287 |
+
UND -7.19438
|
288 |
+
▁EVEN -7.1973
|
289 |
+
ANCE -7.19936
|
290 |
+
▁YEAR -7.20074
|
291 |
+
HO -7.20126
|
292 |
+
AM -7.20803
|
293 |
+
▁CHA -7.20944
|
294 |
+
▁BACK -7.21247
|
295 |
+
VO -7.22034
|
296 |
+
ANT -7.24148
|
297 |
+
DI -7.24414
|
298 |
+
▁ALSO -7.24441
|
299 |
+
▁THOSE -7.2492
|
300 |
+
▁MAN -7.25828
|
301 |
+
CTION -7.25994
|
302 |
+
ICAL -7.27095
|
303 |
+
▁JO -7.27522
|
304 |
+
▁OP -7.27657
|
305 |
+
▁NEW -7.28026
|
306 |
+
▁MU -7.28457
|
307 |
+
▁HU -7.28719
|
308 |
+
▁KIND -7.29056
|
309 |
+
▁NE -7.29057
|
310 |
+
CA -7.29455
|
311 |
+
END -7.29991
|
312 |
+
TIC -7.30338
|
313 |
+
FUL -7.308
|
314 |
+
▁YEAH -7.30971
|
315 |
+
SH -7.31052
|
316 |
+
▁APP -7.31863
|
317 |
+
▁THINGS -7.31873
|
318 |
+
SIDE -7.31876
|
319 |
+
▁GOOD -7.32149
|
320 |
+
ONE -7.32385
|
321 |
+
▁TAKE -7.33148
|
322 |
+
CU -7.33525
|
323 |
+
▁EVERY -7.33606
|
324 |
+
▁MEAN -7.33916
|
325 |
+
▁FIRST -7.35633
|
326 |
+
OP -7.35807
|
327 |
+
▁TH -7.35816
|
328 |
+
▁MUCH -7.36035
|
329 |
+
▁PART -7.36303
|
330 |
+
UGH -7.38075
|
331 |
+
▁COME -7.39025
|
332 |
+
J -7.40206
|
333 |
+
▁THAN -7.4027
|
334 |
+
▁EXP -7.40635
|
335 |
+
▁AGAIN -7.40638
|
336 |
+
▁LITTLE -7.4123
|
337 |
+
MB -7.42061
|
338 |
+
▁NEED -7.42982
|
339 |
+
▁TALK -7.42993
|
340 |
+
IF -7.43499
|
341 |
+
FOR -7.43685
|
342 |
+
▁SH -7.43707
|
343 |
+
ISH -7.43834
|
344 |
+
▁STA -7.44406
|
345 |
+
ATED -7.44429
|
346 |
+
▁GU -7.4457
|
347 |
+
▁LET -7.44843
|
348 |
+
IA -7.45208
|
349 |
+
▁MAR -7.46218
|
350 |
+
▁DOWN -7.46252
|
351 |
+
▁DAY -7.46636
|
352 |
+
▁GA -7.46831
|
353 |
+
▁SOMETHING -7.47373
|
354 |
+
▁BU -7.47952
|
355 |
+
DUC -7.47968
|
356 |
+
HA -7.48577
|
357 |
+
▁LOT -7.48964
|
358 |
+
▁RU -7.49641
|
359 |
+
▁THOUGH -7.50103
|
360 |
+
▁GREAT -7.51571
|
361 |
+
AIN -7.53755
|
362 |
+
▁THROUGH -7.53814
|
363 |
+
▁THING -7.5397
|
364 |
+
OUS -7.54298
|
365 |
+
▁PRI -7.54663
|
366 |
+
▁GOT -7.54668
|
367 |
+
▁SHOULD -7.54854
|
368 |
+
▁AFTER -7.54887
|
369 |
+
▁HEAR -7.54921
|
370 |
+
▁TA -7.5583
|
371 |
+
▁ONLY -7.56318
|
372 |
+
▁CHI -7.56667
|
373 |
+
IOUS -7.58401
|
374 |
+
▁SHA -7.58711
|
375 |
+
▁MOST -7.5956
|
376 |
+
▁ACTUALLY -7.59878
|
377 |
+
▁START -7.60046
|
378 |
+
LIC -7.60951
|
379 |
+
▁VA -7.61021
|
380 |
+
▁RI -7.6118
|
381 |
+
DAY -7.61429
|
382 |
+
IAN -7.6194
|
383 |
+
▁DOES -7.62247
|
384 |
+
ROW -7.62941
|
385 |
+
▁GRA -7.63287
|
386 |
+
ITION -7.64608
|
387 |
+
▁MANY -7.6498
|
388 |
+
▁BEFORE -7.67839
|
389 |
+
▁GIVE -7.67892
|
390 |
+
PORT -7.68357
|
391 |
+
QUI -7.70117
|
392 |
+
▁LIFE -7.70155
|
393 |
+
▁WORLD -7.70833
|
394 |
+
▁PI -7.71249
|
395 |
+
▁LONG -7.71586
|
396 |
+
▁THREE -7.72143
|
397 |
+
IZE -7.72871
|
398 |
+
NESS -7.73046
|
399 |
+
▁SHOW -7.73117
|
400 |
+
PH -7.74408
|
401 |
+
▁WHY -7.75452
|
402 |
+
▁QUESTION -7.7659
|
403 |
+
WARD -7.76633
|
404 |
+
▁THANK -7.77763
|
405 |
+
▁PH -7.78092
|
406 |
+
▁DIFFERENT -7.79798
|
407 |
+
▁OWN -7.8008
|
408 |
+
▁FEEL -7.80762
|
409 |
+
▁MIGHT -7.81212
|
410 |
+
▁HAPPEN -7.82257
|
411 |
+
▁MADE -7.82361
|
412 |
+
▁BRO -7.83505
|
413 |
+
IBLE -7.83692
|
414 |
+
▁HI -7.83977
|
415 |
+
▁STATE -7.8432
|
416 |
+
▁HAND -7.85373
|
417 |
+
▁NEVER -7.8582
|
418 |
+
▁PLACE -7.8697
|
419 |
+
▁LOVE -7.87056
|
420 |
+
▁DU -7.87177
|
421 |
+
▁POINT -7.87926
|
422 |
+
▁HELP -7.88273
|
423 |
+
▁COUNT -7.88305
|
424 |
+
▁STILL -7.88446
|
425 |
+
▁MR -7.90123
|
426 |
+
▁FIND -7.90288
|
427 |
+
▁PERSON -7.92879
|
428 |
+
▁CAME -7.93
|
429 |
+
▁SAME -7.95337
|
430 |
+
▁LAST -7.97701
|
431 |
+
▁HIGH -7.97875
|
432 |
+
▁OLD -8.00689
|
433 |
+
▁UNDER -8.01208
|
434 |
+
▁FOUR -8.01237
|
435 |
+
▁AROUND -8.0163
|
436 |
+
▁SORT -8.0255
|
437 |
+
▁CHANGE -8.0293
|
438 |
+
▁YES -8.03364
|
439 |
+
SHIP -8.04202
|
440 |
+
▁ANOTHER -8.04909
|
441 |
+
ATIVE -8.07714
|
442 |
+
▁FOUND -8.09227
|
443 |
+
▁JA -8.09351
|
444 |
+
▁ALWAYS -8.10023
|
445 |
+
▁NEXT -8.10913
|
446 |
+
▁TURN -8.11079
|
447 |
+
▁JU -8.12961
|
448 |
+
▁SIX -8.13018
|
449 |
+
▁FACT -8.13809
|
450 |
+
▁INTEREST -8.14199
|
451 |
+
▁WORD -8.15103
|
452 |
+
▁THOUSAND -8.16173
|
453 |
+
▁HUNDRED -8.19128
|
454 |
+
▁NUMBER -8.19271
|
455 |
+
▁IDEA -8.2011
|
456 |
+
▁PLAN -8.21386
|
457 |
+
▁COURSE -8.21699
|
458 |
+
▁SCHOOL -8.22226
|
459 |
+
▁HOUSE -8.22885
|
460 |
+
▁TWENTY -8.23354
|
461 |
+
▁JE -8.23872
|
462 |
+
▁PLAY -8.2479
|
463 |
+
▁AWAY -8.25259
|
464 |
+
▁LEARN -8.25403
|
465 |
+
▁HARD -8.25523
|
466 |
+
▁WEEK -8.25715
|
467 |
+
▁BETTER -8.26711
|
468 |
+
▁WHILE -8.27626
|
469 |
+
▁FRIEND -8.28156
|
470 |
+
▁OKAY -8.28222
|
471 |
+
▁NINE -8.28927
|
472 |
+
▁UNDERSTAND -8.30685
|
473 |
+
▁KEEP -8.30703
|
474 |
+
▁GONNA -8.30908
|
475 |
+
▁SYSTEM -8.33115
|
476 |
+
▁AMERICA -8.33344
|
477 |
+
▁POWER -8.34085
|
478 |
+
▁IMPORTANT -8.34508
|
479 |
+
▁WITHOUT -8.35783
|
480 |
+
▁MAYBE -8.36369
|
481 |
+
▁SEVEN -8.36468
|
482 |
+
▁BETWEEN -8.36808
|
483 |
+
▁BUILD -8.38309
|
484 |
+
▁CERTAIN -8.38571
|
485 |
+
▁PROBLEM -8.40003
|
486 |
+
▁MONEY -8.40454
|
487 |
+
▁BELIEVE -8.42698
|
488 |
+
▁SECOND -8.43244
|
489 |
+
▁REASON -8.45837
|
490 |
+
▁TOGETHER -8.49857
|
491 |
+
▁PUBLIC -8.50598
|
492 |
+
▁ANYTHING -8.50789
|
493 |
+
▁SPEAK -8.51154
|
494 |
+
▁BUSINESS -8.5218
|
495 |
+
▁EVERYTHING -8.52868
|
496 |
+
▁CLOSE -8.52921
|
497 |
+
▁QUITE -8.5317
|
498 |
+
▁ANSWER -8.5436
|
499 |
+
▁ENOUGH -8.54754
|
500 |
+
Q -9.75572
|
data/lang_bpe_500/words.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f51338a57551ee4d7bd41d679a4890087fc13c41af8c266742cb1b94095a03c5
|
3 |
+
size 6749578
|
data/lm/G_4_gram.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dbd55286dcd73575b22bba203cc0c53fcad9891196760348bd8438dfbc3083ab
|
3 |
+
size 668693803
|
exp/cpu_jit.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fdcb94b47038797a1f18e76c312d2755706277bcd8dceb8a36d887589a3a3965
|
3 |
+
size 457683746
|
exp/pretrained.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a2e1e15835f1f5f3f73f0bce3fda061157db0ddd1546ebafd5d332b6b19bb62f
|
3 |
+
size 437153185
|
log/log-decode-2022-04-08-22-02-12
ADDED
@@ -0,0 +1,778 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2022-04-08 22:02:12,850 INFO [decode.py:583] Decoding started
|
2 |
+
2022-04-08 22:02:12,851 INFO [decode.py:584] {'subsampling_factor': 4, 'vgg_frontend': False, 'use_feat_batchnorm': True, 'feature_dim': 80, 'nhead': 8, 'attention_dim': 512, 'num_decoder_layers': 6, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True, 'env_info': {'k2-version': '1.14', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': '6833270cb228aba7bf9681fccd41e2b52f7d984c', 'k2-git-date': 'Wed Mar 16 11:16:05 2022', 'lhotse-version': '1.0.0.dev+git.d917411.clean', 'torch-cuda-available': True, 'torch-cuda-version': '11.1', 'python-version': '3.7', 'icefall-git-branch': 'gigaspeech_recipe', 'icefall-git-sha1': 'c3993a5-dirty', 'icefall-git-date': 'Mon Mar 21 13:49:39 2022', 'icefall-path': '/userhome/user/guanbo/icefall_decode', 'k2-path': '/opt/conda/lib/python3.7/site-packages/k2-1.14.dev20220408+cuda11.1.torch1.10.0-py3.7-linux-x86_64.egg/k2/__init__.py', 'lhotse-path': '/userhome/user/guanbo/lhotse/lhotse/__init__.py', 'hostname': 'd7b02ab00b70c011ec0a3ee069db84328338-chenx8564-0', 'IP address': '10.9.150.18'}, 'epoch': 18, 'avg': 6, 'method': 'attention-decoder', 'num_paths': 1000, 'nbest_scale': 0.5, 'exp_dir': PosixPath('conformer_ctc/exp_500_8_2'), 'lang_dir': PosixPath('data/lang_bpe_500'), 'lm_dir': PosixPath('data/lm'), 'manifest_dir': PosixPath('data/fbank'), 'max_duration': 20, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'return_cuts': True, 'num_workers': 1, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'subset': 'XL', 'lazy_load': True, 'small_dev': False}
|
3 |
+
2022-04-08 22:02:13,611 INFO [lexicon.py:176] Loading pre-compiled data/lang_bpe_500/Linv.pt
|
4 |
+
2022-04-08 22:02:13,897 INFO [decode.py:594] device: cuda:0
|
5 |
+
2022-04-08 22:02:19,463 INFO [decode.py:656] Loading pre-compiled G_4_gram.pt
|
6 |
+
2022-04-08 22:02:23,064 INFO [decode.py:692] averaging ['conformer_ctc/exp_500_8_2/epoch-13.pt', 'conformer_ctc/exp_500_8_2/epoch-14.pt', 'conformer_ctc/exp_500_8_2/epoch-15.pt', 'conformer_ctc/exp_500_8_2/epoch-16.pt', 'conformer_ctc/exp_500_8_2/epoch-17.pt', 'conformer_ctc/exp_500_8_2/epoch-18.pt']
|
7 |
+
2022-04-08 22:04:17,302 INFO [decode.py:699] Number of model parameters: 109226120
|
8 |
+
2022-04-08 22:04:17,303 INFO [asr_datamodule.py:372] About to get dev cuts
|
9 |
+
2022-04-08 22:04:21,114 INFO [decode.py:497] batch 0/?, cuts processed until now is 3
|
10 |
+
2022-04-08 22:06:56,367 INFO [decode.py:497] batch 100/?, cuts processed until now is 243
|
11 |
+
2022-04-08 22:09:33,967 INFO [decode.py:497] batch 200/?, cuts processed until now is 464
|
12 |
+
2022-04-08 22:12:05,730 INFO [decode.py:497] batch 300/?, cuts processed until now is 665
|
13 |
+
2022-04-08 22:13:23,989 INFO [decode.py:736] Caught exception:
|
14 |
+
CUDA out of memory. Tried to allocate 4.93 GiB (GPU 0; 31.75 GiB total capacity; 24.54 GiB already allocated; 3.87 GiB free; 26.53 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
15 |
+
|
16 |
+
2022-04-08 22:13:23,989 INFO [decode.py:743] num_arcs before pruning: 333034
|
17 |
+
2022-04-08 22:13:23,989 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
18 |
+
2022-04-08 22:13:24,010 INFO [decode.py:757] num_arcs after pruning: 7258
|
19 |
+
2022-04-08 22:14:38,171 INFO [decode.py:497] batch 400/?, cuts processed until now is 891
|
20 |
+
2022-04-08 22:17:05,640 INFO [decode.py:497] batch 500/?, cuts processed until now is 1098
|
21 |
+
2022-04-08 22:19:29,901 INFO [decode.py:497] batch 600/?, cuts processed until now is 1363
|
22 |
+
2022-04-08 22:20:05,953 INFO [decode.py:736] Caught exception:
|
23 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.51 GiB already allocated; 7.07 GiB free; 23.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
24 |
+
|
25 |
+
2022-04-08 22:20:05,954 INFO [decode.py:743] num_arcs before pruning: 514392
|
26 |
+
2022-04-08 22:20:05,954 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
27 |
+
2022-04-08 22:20:05,966 INFO [decode.py:757] num_arcs after pruning: 13888
|
28 |
+
2022-04-08 22:22:02,765 INFO [decode.py:497] batch 700/?, cuts processed until now is 1626
|
29 |
+
2022-04-08 22:24:05,393 INFO [decode.py:736] Caught exception:
|
30 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 14.24 GiB already allocated; 7.07 GiB free; 23.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
31 |
+
|
32 |
+
2022-04-08 22:24:05,393 INFO [decode.py:743] num_arcs before pruning: 164808
|
33 |
+
2022-04-08 22:24:05,393 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
34 |
+
2022-04-08 22:24:05,404 INFO [decode.py:757] num_arcs after pruning: 8771
|
35 |
+
2022-04-08 22:24:40,652 INFO [decode.py:497] batch 800/?, cuts processed until now is 1870
|
36 |
+
2022-04-08 22:25:03,574 INFO [decode.py:736] Caught exception:
|
37 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 14.28 GiB already allocated; 7.07 GiB free; 23.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
38 |
+
|
39 |
+
2022-04-08 22:25:03,575 INFO [decode.py:743] num_arcs before pruning: 267824
|
40 |
+
2022-04-08 22:25:03,575 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
41 |
+
2022-04-08 22:25:03,582 INFO [decode.py:757] num_arcs after pruning: 9250
|
42 |
+
2022-04-08 22:27:25,872 INFO [decode.py:497] batch 900/?, cuts processed until now is 2134
|
43 |
+
2022-04-08 22:29:45,824 INFO [decode.py:736] Caught exception:
|
44 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 14.45 GiB already allocated; 7.06 GiB free; 23.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
45 |
+
|
46 |
+
2022-04-08 22:29:45,825 INFO [decode.py:743] num_arcs before pruning: 236799
|
47 |
+
2022-04-08 22:29:45,825 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
48 |
+
2022-04-08 22:29:45,837 INFO [decode.py:757] num_arcs after pruning: 7885
|
49 |
+
2022-04-08 22:30:03,747 INFO [decode.py:497] batch 1000/?, cuts processed until now is 2380
|
50 |
+
2022-04-08 22:30:44,532 INFO [decode.py:736] Caught exception:
|
51 |
+
|
52 |
+
Some bad things happened. Please read the above error messages and stack
|
53 |
+
trace. If you are using Python, the following command may be helpful:
|
54 |
+
|
55 |
+
gdb --args python /path/to/your/code.py
|
56 |
+
|
57 |
+
(You can use `gdb` to debug the code. Please consider compiling
|
58 |
+
a debug version of k2.).
|
59 |
+
|
60 |
+
If you are unable to fix it, please open an issue at:
|
61 |
+
|
62 |
+
https://github.com/k2-fsa/k2/issues/new
|
63 |
+
|
64 |
+
|
65 |
+
2022-04-08 22:30:44,532 INFO [decode.py:743] num_arcs before pruning: 632546
|
66 |
+
2022-04-08 22:30:44,533 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
67 |
+
2022-04-08 22:30:44,585 INFO [decode.py:757] num_arcs after pruning: 10602
|
68 |
+
2022-04-08 22:32:41,978 INFO [decode.py:497] batch 1100/?, cuts processed until now is 2624
|
69 |
+
2022-04-08 22:34:54,199 INFO [decode.py:736] Caught exception:
|
70 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.67 GiB already allocated; 5.68 GiB free; 24.72 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
71 |
+
|
72 |
+
2022-04-08 22:34:54,200 INFO [decode.py:743] num_arcs before pruning: 227558
|
73 |
+
2022-04-08 22:34:54,200 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
74 |
+
2022-04-08 22:34:54,218 INFO [decode.py:757] num_arcs after pruning: 8505
|
75 |
+
2022-04-08 22:35:25,806 INFO [decode.py:497] batch 1200/?, cuts processed until now is 2889
|
76 |
+
2022-04-08 22:38:28,827 INFO [decode.py:497] batch 1300/?, cuts processed until now is 3182
|
77 |
+
2022-04-08 22:39:35,318 INFO [decode.py:736] Caught exception:
|
78 |
+
CUDA out of memory. Tried to allocate 2.65 GiB (GPU 0; 31.75 GiB total capacity; 27.28 GiB already allocated; 1.20 GiB free; 29.19 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
79 |
+
|
80 |
+
2022-04-08 22:39:35,318 INFO [decode.py:743] num_arcs before pruning: 348294
|
81 |
+
2022-04-08 22:39:35,318 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
82 |
+
2022-04-08 22:39:35,324 INFO [decode.py:757] num_arcs after pruning: 4422
|
83 |
+
2022-04-08 22:41:48,886 INFO [decode.py:497] batch 1400/?, cuts processed until now is 3491
|
84 |
+
2022-04-08 22:42:03,583 INFO [decode.py:736] Caught exception:
|
85 |
+
CUDA out of memory. Tried to allocate 4.53 GiB (GPU 0; 31.75 GiB total capacity; 24.43 GiB already allocated; 1.20 GiB free; 29.19 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
86 |
+
|
87 |
+
2022-04-08 22:42:03,584 INFO [decode.py:743] num_arcs before pruning: 446338
|
88 |
+
2022-04-08 22:42:03,584 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
89 |
+
2022-04-08 22:42:03,592 INFO [decode.py:757] num_arcs after pruning: 13422
|
90 |
+
2022-04-08 22:44:41,081 INFO [decode.py:497] batch 1500/?, cuts processed until now is 3738
|
91 |
+
2022-04-08 22:44:48,819 INFO [decode.py:736] Caught exception:
|
92 |
+
CUDA out of memory. Tried to allocate 1.94 GiB (GPU 0; 31.75 GiB total capacity; 29.06 GiB already allocated; 231.75 MiB free; 30.17 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
93 |
+
|
94 |
+
2022-04-08 22:44:48,820 INFO [decode.py:743] num_arcs before pruning: 263598
|
95 |
+
2022-04-08 22:44:48,820 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
96 |
+
2022-04-08 22:44:48,833 INFO [decode.py:757] num_arcs after pruning: 7847
|
97 |
+
2022-04-08 22:47:10,728 INFO [decode.py:497] batch 1600/?, cuts processed until now is 3970
|
98 |
+
2022-04-08 22:47:52,235 INFO [decode.py:736] Caught exception:
|
99 |
+
CUDA out of memory. Tried to allocate 5.20 GiB (GPU 0; 31.75 GiB total capacity; 24.71 GiB already allocated; 231.75 MiB free; 30.17 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
100 |
+
|
101 |
+
2022-04-08 22:47:52,236 INFO [decode.py:743] num_arcs before pruning: 317009
|
102 |
+
2022-04-08 22:47:52,236 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
103 |
+
2022-04-08 22:47:52,252 INFO [decode.py:757] num_arcs after pruning: 9354
|
104 |
+
2022-04-08 22:49:32,370 INFO [decode.py:736] Caught exception:
|
105 |
+
CUDA out of memory. Tried to allocate 4.55 GiB (GPU 0; 31.75 GiB total capacity; 24.05 GiB already allocated; 231.75 MiB free; 30.17 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
106 |
+
|
107 |
+
2022-04-08 22:49:32,371 INFO [decode.py:743] num_arcs before pruning: 136624
|
108 |
+
2022-04-08 22:49:32,371 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
109 |
+
2022-04-08 22:49:32,402 INFO [decode.py:757] num_arcs after pruning: 5456
|
110 |
+
2022-04-08 22:49:36,398 INFO [decode.py:497] batch 1700/?, cuts processed until now is 4192
|
111 |
+
2022-04-08 22:50:50,382 INFO [decode.py:736] Caught exception:
|
112 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.56 GiB already allocated; 2.10 GiB free; 28.29 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
113 |
+
|
114 |
+
2022-04-08 22:50:50,383 INFO [decode.py:743] num_arcs before pruning: 303893
|
115 |
+
2022-04-08 22:50:50,383 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
116 |
+
2022-04-08 22:50:50,400 INFO [decode.py:757] num_arcs after pruning: 9312
|
117 |
+
2022-04-08 22:52:09,335 INFO [decode.py:497] batch 1800/?, cuts processed until now is 4416
|
118 |
+
2022-04-08 22:52:51,744 INFO [decode.py:736] Caught exception:
|
119 |
+
CUDA out of memory. Tried to allocate 5.02 GiB (GPU 0; 31.75 GiB total capacity; 26.25 GiB already allocated; 2.10 GiB free; 28.29 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
120 |
+
|
121 |
+
2022-04-08 22:52:51,745 INFO [decode.py:743] num_arcs before pruning: 379292
|
122 |
+
2022-04-08 22:52:51,745 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
123 |
+
2022-04-08 22:52:51,751 INFO [decode.py:757] num_arcs after pruning: 14317
|
124 |
+
2022-04-08 22:54:33,478 INFO [decode.py:497] batch 1900/?, cuts processed until now is 4619
|
125 |
+
2022-04-08 22:56:34,371 INFO [decode.py:736] Caught exception:
|
126 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.32 GiB already allocated; 3.07 GiB free; 27.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
127 |
+
|
128 |
+
2022-04-08 22:56:34,372 INFO [decode.py:743] num_arcs before pruning: 294097
|
129 |
+
2022-04-08 22:56:34,372 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
130 |
+
2022-04-08 22:56:34,389 INFO [decode.py:757] num_arcs after pruning: 5895
|
131 |
+
2022-04-08 22:56:47,967 INFO [decode.py:497] batch 2000/?, cuts processed until now is 4816
|
132 |
+
2022-04-08 22:58:06,236 INFO [decode.py:736] Caught exception:
|
133 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.41 GiB already allocated; 3.06 GiB free; 27.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
134 |
+
|
135 |
+
2022-04-08 22:58:06,236 INFO [decode.py:743] num_arcs before pruning: 253855
|
136 |
+
2022-04-08 22:58:06,236 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
137 |
+
2022-04-08 22:58:06,253 INFO [decode.py:757] num_arcs after pruning: 9191
|
138 |
+
2022-04-08 22:58:17,534 INFO [decode.py:736] Caught exception:
|
139 |
+
CUDA out of memory. Tried to allocate 2.17 GiB (GPU 0; 31.75 GiB total capacity; 26.06 GiB already allocated; 1.56 GiB free; 28.83 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
140 |
+
|
141 |
+
2022-04-08 22:58:17,535 INFO [decode.py:743] num_arcs before pruning: 242689
|
142 |
+
2022-04-08 22:58:17,535 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
143 |
+
2022-04-08 22:58:17,549 INFO [decode.py:757] num_arcs after pruning: 4733
|
144 |
+
2022-04-08 22:58:32,154 INFO [decode.py:736] Caught exception:
|
145 |
+
CUDA out of memory. Tried to allocate 2.38 GiB (GPU 0; 31.75 GiB total capacity; 26.65 GiB already allocated; 1.57 GiB free; 28.82 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
146 |
+
|
147 |
+
2022-04-08 22:58:32,155 INFO [decode.py:743] num_arcs before pruning: 288302
|
148 |
+
2022-04-08 22:58:32,155 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
149 |
+
2022-04-08 22:58:32,164 INFO [decode.py:757] num_arcs after pruning: 5472
|
150 |
+
2022-04-08 22:59:15,988 INFO [decode.py:497] batch 2100/?, cuts processed until now is 4981
|
151 |
+
2022-04-08 23:00:31,937 INFO [decode.py:736] Caught exception:
|
152 |
+
|
153 |
+
Some bad things happened. Please read the above error messages and stack
|
154 |
+
trace. If you are using Python, the following command may be helpful:
|
155 |
+
|
156 |
+
gdb --args python /path/to/your/code.py
|
157 |
+
|
158 |
+
(You can use `gdb` to debug the code. Please consider compiling
|
159 |
+
a debug version of k2.).
|
160 |
+
|
161 |
+
If you are unable to fix it, please open an issue at:
|
162 |
+
|
163 |
+
https://github.com/k2-fsa/k2/issues/new
|
164 |
+
|
165 |
+
|
166 |
+
2022-04-08 23:00:31,937 INFO [decode.py:743] num_arcs before pruning: 745182
|
167 |
+
2022-04-08 23:00:31,937 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
168 |
+
2022-04-08 23:00:31,989 INFO [decode.py:757] num_arcs after pruning: 13933
|
169 |
+
2022-04-08 23:01:49,408 INFO [decode.py:497] batch 2200/?, cuts processed until now is 5132
|
170 |
+
2022-04-08 23:04:08,911 INFO [decode.py:497] batch 2300/?, cuts processed until now is 5273
|
171 |
+
2022-04-08 23:06:50,854 INFO [decode.py:497] batch 2400/?, cuts processed until now is 5388
|
172 |
+
2022-04-08 23:06:53,493 INFO [decode.py:736] Caught exception:
|
173 |
+
|
174 |
+
Some bad things happened. Please read the above error messages and stack
|
175 |
+
trace. If you are using Python, the following command may be helpful:
|
176 |
+
|
177 |
+
gdb --args python /path/to/your/code.py
|
178 |
+
|
179 |
+
(You can use `gdb` to debug the code. Please consider compiling
|
180 |
+
a debug version of k2.).
|
181 |
+
|
182 |
+
If you are unable to fix it, please open an issue at:
|
183 |
+
|
184 |
+
https://github.com/k2-fsa/k2/issues/new
|
185 |
+
|
186 |
+
|
187 |
+
2022-04-08 23:06:53,493 INFO [decode.py:743] num_arcs before pruning: 203946
|
188 |
+
2022-04-08 23:06:53,493 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
189 |
+
2022-04-08 23:06:53,545 INFO [decode.py:757] num_arcs after pruning: 7172
|
190 |
+
2022-04-08 23:09:08,764 INFO [decode.py:497] batch 2500/?, cuts processed until now is 5488
|
191 |
+
2022-04-08 23:10:26,345 INFO [decode.py:841] Caught exception:
|
192 |
+
CUDA out of memory. Tried to allocate 5.79 GiB (GPU 0; 31.75 GiB total capacity; 24.31 GiB already allocated; 1.58 GiB free; 28.82 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
193 |
+
|
194 |
+
2022-04-08 23:10:26,346 INFO [decode.py:843] num_paths before decreasing: 1000
|
195 |
+
2022-04-08 23:10:26,346 INFO [decode.py:852] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
196 |
+
2022-04-08 23:10:26,346 INFO [decode.py:858] num_paths after decreasing: 500
|
197 |
+
2022-04-08 23:11:31,973 INFO [decode.py:497] batch 2600/?, cuts processed until now is 5588
|
198 |
+
2022-04-08 23:13:41,208 INFO [decode.py:497] batch 2700/?, cuts processed until now is 5688
|
199 |
+
2022-04-08 23:20:49,158 INFO [decode.py:567]
|
200 |
+
For dev, WER of different settings are:
|
201 |
+
ngram_lm_scale_0.6_attention_scale_1.5 10.46 best for dev
|
202 |
+
ngram_lm_scale_0.6_attention_scale_1.7 10.46
|
203 |
+
ngram_lm_scale_0.5_attention_scale_0.9 10.47
|
204 |
+
ngram_lm_scale_0.5_attention_scale_1.0 10.47
|
205 |
+
ngram_lm_scale_0.5_attention_scale_1.1 10.47
|
206 |
+
ngram_lm_scale_0.5_attention_scale_1.2 10.47
|
207 |
+
ngram_lm_scale_0.5_attention_scale_1.3 10.47
|
208 |
+
ngram_lm_scale_0.5_attention_scale_1.5 10.47
|
209 |
+
ngram_lm_scale_0.5_attention_scale_1.7 10.47
|
210 |
+
ngram_lm_scale_0.6_attention_scale_1.3 10.47
|
211 |
+
ngram_lm_scale_0.6_attention_scale_1.9 10.47
|
212 |
+
ngram_lm_scale_0.6_attention_scale_2.0 10.47
|
213 |
+
ngram_lm_scale_0.6_attention_scale_2.1 10.47
|
214 |
+
ngram_lm_scale_0.7_attention_scale_1.9 10.47
|
215 |
+
ngram_lm_scale_0.7_attention_scale_2.0 10.47
|
216 |
+
ngram_lm_scale_0.7_attention_scale_2.1 10.47
|
217 |
+
ngram_lm_scale_0.7_attention_scale_2.2 10.47
|
218 |
+
ngram_lm_scale_0.5_attention_scale_1.9 10.48
|
219 |
+
ngram_lm_scale_0.6_attention_scale_1.1 10.48
|
220 |
+
ngram_lm_scale_0.6_attention_scale_1.2 10.48
|
221 |
+
ngram_lm_scale_0.6_attention_scale_2.2 10.48
|
222 |
+
ngram_lm_scale_0.6_attention_scale_2.3 10.48
|
223 |
+
ngram_lm_scale_0.7_attention_scale_1.5 10.48
|
224 |
+
ngram_lm_scale_0.7_attention_scale_1.7 10.48
|
225 |
+
ngram_lm_scale_0.7_attention_scale_2.3 10.48
|
226 |
+
ngram_lm_scale_0.7_attention_scale_2.5 10.48
|
227 |
+
ngram_lm_scale_0.9_attention_scale_4.0 10.48
|
228 |
+
ngram_lm_scale_0.3_attention_scale_1.1 10.49
|
229 |
+
ngram_lm_scale_0.5_attention_scale_0.6 10.49
|
230 |
+
ngram_lm_scale_0.5_attention_scale_0.7 10.49
|
231 |
+
ngram_lm_scale_0.5_attention_scale_2.0 10.49
|
232 |
+
ngram_lm_scale_0.5_attention_scale_2.1 10.49
|
233 |
+
ngram_lm_scale_0.5_attention_scale_2.5 10.49
|
234 |
+
ngram_lm_scale_0.5_attention_scale_3.0 10.49
|
235 |
+
ngram_lm_scale_0.6_attention_scale_1.0 10.49
|
236 |
+
ngram_lm_scale_0.6_attention_scale_2.5 10.49
|
237 |
+
ngram_lm_scale_0.6_attention_scale_3.0 10.49
|
238 |
+
ngram_lm_scale_0.7_attention_scale_1.3 10.49
|
239 |
+
ngram_lm_scale_0.7_attention_scale_3.0 10.49
|
240 |
+
ngram_lm_scale_0.7_attention_scale_4.0 10.49
|
241 |
+
ngram_lm_scale_0.9_attention_scale_3.0 10.49
|
242 |
+
ngram_lm_scale_0.9_attention_scale_5.0 10.49
|
243 |
+
ngram_lm_scale_1.0_attention_scale_4.0 10.49
|
244 |
+
ngram_lm_scale_1.0_attention_scale_5.0 10.49
|
245 |
+
ngram_lm_scale_1.1_attention_scale_4.0 10.49
|
246 |
+
ngram_lm_scale_1.1_attention_scale_5.0 10.49
|
247 |
+
ngram_lm_scale_1.2_attention_scale_4.0 10.49
|
248 |
+
ngram_lm_scale_1.2_attention_scale_5.0 10.49
|
249 |
+
ngram_lm_scale_1.3_attention_scale_5.0 10.49
|
250 |
+
ngram_lm_scale_1.5_attention_scale_5.0 10.49
|
251 |
+
ngram_lm_scale_0.3_attention_scale_0.7 10.5
|
252 |
+
ngram_lm_scale_0.3_attention_scale_0.9 10.5
|
253 |
+
ngram_lm_scale_0.3_attention_scale_1.0 10.5
|
254 |
+
ngram_lm_scale_0.3_attention_scale_1.2 10.5
|
255 |
+
ngram_lm_scale_0.3_attention_scale_1.3 10.5
|
256 |
+
ngram_lm_scale_0.3_attention_scale_1.5 10.5
|
257 |
+
ngram_lm_scale_0.5_attention_scale_2.2 10.5
|
258 |
+
ngram_lm_scale_0.5_attention_scale_2.3 10.5
|
259 |
+
ngram_lm_scale_0.6_attention_scale_0.7 10.5
|
260 |
+
ngram_lm_scale_0.6_attention_scale_0.9 10.5
|
261 |
+
ngram_lm_scale_0.7_attention_scale_1.0 10.5
|
262 |
+
ngram_lm_scale_0.7_attention_scale_1.1 10.5
|
263 |
+
ngram_lm_scale_0.7_attention_scale_5.0 10.5
|
264 |
+
ngram_lm_scale_0.9_attention_scale_2.1 10.5
|
265 |
+
ngram_lm_scale_1.0_attention_scale_3.0 10.5
|
266 |
+
ngram_lm_scale_1.3_attention_scale_4.0 10.5
|
267 |
+
ngram_lm_scale_1.5_attention_scale_4.0 10.5
|
268 |
+
ngram_lm_scale_0.3_attention_scale_1.7 10.51
|
269 |
+
ngram_lm_scale_0.3_attention_scale_1.9 10.51
|
270 |
+
ngram_lm_scale_0.3_attention_scale_2.0 10.51
|
271 |
+
ngram_lm_scale_0.3_attention_scale_2.1 10.51
|
272 |
+
ngram_lm_scale_0.3_attention_scale_2.2 10.51
|
273 |
+
ngram_lm_scale_0.3_attention_scale_2.3 10.51
|
274 |
+
ngram_lm_scale_0.3_attention_scale_2.5 10.51
|
275 |
+
ngram_lm_scale_0.3_attention_scale_3.0 10.51
|
276 |
+
ngram_lm_scale_0.3_attention_scale_4.0 10.51
|
277 |
+
ngram_lm_scale_0.5_attention_scale_0.5 10.51
|
278 |
+
ngram_lm_scale_0.5_attention_scale_4.0 10.51
|
279 |
+
ngram_lm_scale_0.5_attention_scale_5.0 10.51
|
280 |
+
ngram_lm_scale_0.6_attention_scale_4.0 10.51
|
281 |
+
ngram_lm_scale_0.6_attention_scale_5.0 10.51
|
282 |
+
ngram_lm_scale_0.7_attention_scale_1.2 10.51
|
283 |
+
ngram_lm_scale_0.9_attention_scale_2.0 10.51
|
284 |
+
ngram_lm_scale_0.9_attention_scale_2.2 10.51
|
285 |
+
ngram_lm_scale_0.9_attention_scale_2.3 10.51
|
286 |
+
ngram_lm_scale_0.9_attention_scale_2.5 10.51
|
287 |
+
ngram_lm_scale_1.0_attention_scale_2.2 10.51
|
288 |
+
ngram_lm_scale_1.0_attention_scale_2.3 10.51
|
289 |
+
ngram_lm_scale_1.0_attention_scale_2.5 10.51
|
290 |
+
ngram_lm_scale_1.1_attention_scale_2.5 10.51
|
291 |
+
ngram_lm_scale_1.2_attention_scale_3.0 10.51
|
292 |
+
ngram_lm_scale_1.7_attention_scale_5.0 10.51
|
293 |
+
ngram_lm_scale_0.05_attention_scale_2.5 10.52
|
294 |
+
ngram_lm_scale_0.05_attention_scale_3.0 10.52
|
295 |
+
ngram_lm_scale_0.08_attention_scale_2.5 10.52
|
296 |
+
ngram_lm_scale_0.08_attention_scale_4.0 10.52
|
297 |
+
ngram_lm_scale_0.08_attention_scale_5.0 10.52
|
298 |
+
ngram_lm_scale_0.1_attention_scale_2.5 10.52
|
299 |
+
ngram_lm_scale_0.1_attention_scale_3.0 10.52
|
300 |
+
ngram_lm_scale_0.1_attention_scale_4.0 10.52
|
301 |
+
ngram_lm_scale_0.1_attention_scale_5.0 10.52
|
302 |
+
ngram_lm_scale_0.3_attention_scale_0.5 10.52
|
303 |
+
ngram_lm_scale_0.3_attention_scale_0.6 10.52
|
304 |
+
ngram_lm_scale_0.3_attention_scale_5.0 10.52
|
305 |
+
ngram_lm_scale_0.6_attention_scale_0.6 10.52
|
306 |
+
ngram_lm_scale_0.7_attention_scale_0.9 10.52
|
307 |
+
ngram_lm_scale_0.9_attention_scale_1.7 10.52
|
308 |
+
ngram_lm_scale_0.9_attention_scale_1.9 10.52
|
309 |
+
ngram_lm_scale_1.0_attention_scale_2.0 10.52
|
310 |
+
ngram_lm_scale_1.0_attention_scale_2.1 10.52
|
311 |
+
ngram_lm_scale_1.1_attention_scale_2.3 10.52
|
312 |
+
ngram_lm_scale_1.1_attention_scale_3.0 10.52
|
313 |
+
ngram_lm_scale_1.9_attention_scale_5.0 10.52
|
314 |
+
ngram_lm_scale_0.01_attention_scale_2.5 10.53
|
315 |
+
ngram_lm_scale_0.01_attention_scale_3.0 10.53
|
316 |
+
ngram_lm_scale_0.01_attention_scale_4.0 10.53
|
317 |
+
ngram_lm_scale_0.01_attention_scale_5.0 10.53
|
318 |
+
ngram_lm_scale_0.05_attention_scale_1.9 10.53
|
319 |
+
ngram_lm_scale_0.05_attention_scale_2.1 10.53
|
320 |
+
ngram_lm_scale_0.05_attention_scale_2.3 10.53
|
321 |
+
ngram_lm_scale_0.05_attention_scale_4.0 10.53
|
322 |
+
ngram_lm_scale_0.05_attention_scale_5.0 10.53
|
323 |
+
ngram_lm_scale_0.08_attention_scale_1.9 10.53
|
324 |
+
ngram_lm_scale_0.08_attention_scale_2.1 10.53
|
325 |
+
ngram_lm_scale_0.08_attention_scale_2.2 10.53
|
326 |
+
ngram_lm_scale_0.08_attention_scale_2.3 10.53
|
327 |
+
ngram_lm_scale_0.08_attention_scale_3.0 10.53
|
328 |
+
ngram_lm_scale_0.1_attention_scale_2.2 10.53
|
329 |
+
ngram_lm_scale_0.1_attention_scale_2.3 10.53
|
330 |
+
ngram_lm_scale_0.3_attention_scale_0.3 10.53
|
331 |
+
ngram_lm_scale_0.9_attention_scale_1.5 10.53
|
332 |
+
ngram_lm_scale_1.0_attention_scale_1.9 10.53
|
333 |
+
ngram_lm_scale_1.1_attention_scale_2.1 10.53
|
334 |
+
ngram_lm_scale_1.1_attention_scale_2.2 10.53
|
335 |
+
ngram_lm_scale_1.2_attention_scale_2.5 10.53
|
336 |
+
ngram_lm_scale_1.3_attention_scale_3.0 10.53
|
337 |
+
ngram_lm_scale_1.7_attention_scale_4.0 10.53
|
338 |
+
ngram_lm_scale_2.0_attention_scale_5.0 10.53
|
339 |
+
ngram_lm_scale_0.01_attention_scale_2.2 10.54
|
340 |
+
ngram_lm_scale_0.01_attention_scale_2.3 10.54
|
341 |
+
ngram_lm_scale_0.05_attention_scale_1.7 10.54
|
342 |
+
ngram_lm_scale_0.05_attention_scale_2.0 10.54
|
343 |
+
ngram_lm_scale_0.05_attention_scale_2.2 10.54
|
344 |
+
ngram_lm_scale_0.08_attention_scale_1.2 10.54
|
345 |
+
ngram_lm_scale_0.08_attention_scale_1.3 10.54
|
346 |
+
ngram_lm_scale_0.08_attention_scale_1.7 10.54
|
347 |
+
ngram_lm_scale_0.08_attention_scale_2.0 10.54
|
348 |
+
ngram_lm_scale_0.1_attention_scale_1.5 10.54
|
349 |
+
ngram_lm_scale_0.1_attention_scale_1.7 10.54
|
350 |
+
ngram_lm_scale_0.1_attention_scale_1.9 10.54
|
351 |
+
ngram_lm_scale_0.1_attention_scale_2.0 10.54
|
352 |
+
ngram_lm_scale_0.1_attention_scale_2.1 10.54
|
353 |
+
ngram_lm_scale_0.9_attention_scale_1.2 10.54
|
354 |
+
ngram_lm_scale_1.0_attention_scale_1.7 10.54
|
355 |
+
ngram_lm_scale_1.2_attention_scale_2.3 10.54
|
356 |
+
ngram_lm_scale_1.3_attention_scale_2.3 10.54
|
357 |
+
ngram_lm_scale_1.5_attention_scale_3.0 10.54
|
358 |
+
ngram_lm_scale_0.01_attention_scale_1.9 10.55
|
359 |
+
ngram_lm_scale_0.01_attention_scale_2.0 10.55
|
360 |
+
ngram_lm_scale_0.01_attention_scale_2.1 10.55
|
361 |
+
ngram_lm_scale_0.05_attention_scale_1.2 10.55
|
362 |
+
ngram_lm_scale_0.05_attention_scale_1.3 10.55
|
363 |
+
ngram_lm_scale_0.08_attention_scale_1.1 10.55
|
364 |
+
ngram_lm_scale_0.08_attention_scale_1.5 10.55
|
365 |
+
ngram_lm_scale_0.1_attention_scale_1.1 10.55
|
366 |
+
ngram_lm_scale_0.1_attention_scale_1.2 10.55
|
367 |
+
ngram_lm_scale_0.1_attention_scale_1.3 10.55
|
368 |
+
ngram_lm_scale_0.6_attention_scale_0.5 10.55
|
369 |
+
ngram_lm_scale_0.7_attention_scale_0.7 10.55
|
370 |
+
ngram_lm_scale_0.9_attention_scale_1.3 10.55
|
371 |
+
ngram_lm_scale_1.0_attention_scale_1.5 10.55
|
372 |
+
ngram_lm_scale_1.1_attention_scale_2.0 10.55
|
373 |
+
ngram_lm_scale_1.2_attention_scale_2.0 10.55
|
374 |
+
ngram_lm_scale_1.2_attention_scale_2.1 10.55
|
375 |
+
ngram_lm_scale_1.2_attention_scale_2.2 10.55
|
376 |
+
ngram_lm_scale_1.3_attention_scale_2.2 10.55
|
377 |
+
ngram_lm_scale_1.3_attention_scale_2.5 10.55
|
378 |
+
ngram_lm_scale_2.1_attention_scale_5.0 10.55
|
379 |
+
ngram_lm_scale_0.01_attention_scale_1.1 10.56
|
380 |
+
ngram_lm_scale_0.01_attention_scale_1.3 10.56
|
381 |
+
ngram_lm_scale_0.01_attention_scale_1.7 10.56
|
382 |
+
ngram_lm_scale_0.05_attention_scale_1.1 10.56
|
383 |
+
ngram_lm_scale_0.05_attention_scale_1.5 10.56
|
384 |
+
ngram_lm_scale_0.08_attention_scale_1.0 10.56
|
385 |
+
ngram_lm_scale_0.1_attention_scale_1.0 10.56
|
386 |
+
ngram_lm_scale_0.7_attention_scale_0.6 10.56
|
387 |
+
ngram_lm_scale_0.9_attention_scale_1.1 10.56
|
388 |
+
ngram_lm_scale_1.0_attention_scale_1.3 10.56
|
389 |
+
ngram_lm_scale_1.1_attention_scale_1.7 10.56
|
390 |
+
ngram_lm_scale_1.1_attention_scale_1.9 10.56
|
391 |
+
ngram_lm_scale_1.2_attention_scale_1.9 10.56
|
392 |
+
ngram_lm_scale_1.3_attention_scale_2.0 10.56
|
393 |
+
ngram_lm_scale_1.9_attention_scale_4.0 10.56
|
394 |
+
ngram_lm_scale_2.2_attention_scale_5.0 10.56
|
395 |
+
ngram_lm_scale_0.01_attention_scale_1.2 10.57
|
396 |
+
ngram_lm_scale_0.01_attention_scale_1.5 10.57
|
397 |
+
ngram_lm_scale_0.05_attention_scale_1.0 10.57
|
398 |
+
ngram_lm_scale_0.1_attention_scale_0.5 10.57
|
399 |
+
ngram_lm_scale_0.1_attention_scale_0.7 10.57
|
400 |
+
ngram_lm_scale_0.1_attention_scale_0.9 10.57
|
401 |
+
ngram_lm_scale_0.5_attention_scale_0.3 10.57
|
402 |
+
ngram_lm_scale_0.9_attention_scale_1.0 10.57
|
403 |
+
ngram_lm_scale_1.1_attention_scale_1.5 10.57
|
404 |
+
ngram_lm_scale_1.2_attention_scale_1.7 10.57
|
405 |
+
ngram_lm_scale_1.3_attention_scale_2.1 10.57
|
406 |
+
ngram_lm_scale_0.01_attention_scale_1.0 10.58
|
407 |
+
ngram_lm_scale_0.05_attention_scale_0.9 10.58
|
408 |
+
ngram_lm_scale_0.08_attention_scale_0.7 10.58
|
409 |
+
ngram_lm_scale_0.08_attention_scale_0.9 10.58
|
410 |
+
ngram_lm_scale_0.1_attention_scale_0.6 10.58
|
411 |
+
ngram_lm_scale_0.3_attention_scale_0.1 10.58
|
412 |
+
ngram_lm_scale_0.9_attention_scale_0.9 10.58
|
413 |
+
ngram_lm_scale_1.0_attention_scale_1.2 10.58
|
414 |
+
ngram_lm_scale_1.3_attention_scale_1.9 10.58
|
415 |
+
ngram_lm_scale_1.5_attention_scale_2.5 10.58
|
416 |
+
ngram_lm_scale_2.0_attention_scale_4.0 10.58
|
417 |
+
ngram_lm_scale_0.01_attention_scale_0.9 10.59
|
418 |
+
ngram_lm_scale_0.08_attention_scale_0.5 10.59
|
419 |
+
ngram_lm_scale_0.08_attention_scale_0.6 10.59
|
420 |
+
ngram_lm_scale_0.1_attention_scale_0.3 10.59
|
421 |
+
ngram_lm_scale_0.3_attention_scale_0.08 10.59
|
422 |
+
ngram_lm_scale_0.6_attention_scale_0.3 10.59
|
423 |
+
ngram_lm_scale_0.7_attention_scale_0.5 10.59
|
424 |
+
ngram_lm_scale_1.7_attention_scale_3.0 10.59
|
425 |
+
ngram_lm_scale_2.3_attention_scale_5.0 10.59
|
426 |
+
ngram_lm_scale_0.05_attention_scale_0.6 10.6
|
427 |
+
ngram_lm_scale_0.05_attention_scale_0.7 10.6
|
428 |
+
ngram_lm_scale_0.08_attention_scale_0.3 10.6
|
429 |
+
ngram_lm_scale_0.3_attention_scale_0.05 10.6
|
430 |
+
ngram_lm_scale_1.0_attention_scale_1.1 10.6
|
431 |
+
ngram_lm_scale_1.1_attention_scale_1.3 10.6
|
432 |
+
ngram_lm_scale_1.2_attention_scale_1.5 10.6
|
433 |
+
ngram_lm_scale_1.5_attention_scale_2.3 10.6
|
434 |
+
ngram_lm_scale_0.01_attention_scale_0.7 10.61
|
435 |
+
ngram_lm_scale_1.3_attention_scale_1.7 10.61
|
436 |
+
ngram_lm_scale_0.01_attention_scale_0.6 10.62
|
437 |
+
ngram_lm_scale_0.05_attention_scale_0.3 10.62
|
438 |
+
ngram_lm_scale_0.05_attention_scale_0.5 10.62
|
439 |
+
ngram_lm_scale_0.1_attention_scale_0.1 10.62
|
440 |
+
ngram_lm_scale_2.1_attention_scale_4.0 10.62
|
441 |
+
ngram_lm_scale_0.01_attention_scale_0.5 10.63
|
442 |
+
ngram_lm_scale_1.0_attention_scale_1.0 10.63
|
443 |
+
ngram_lm_scale_1.5_attention_scale_2.2 10.63
|
444 |
+
ngram_lm_scale_2.5_attention_scale_5.0 10.63
|
445 |
+
ngram_lm_scale_0.08_attention_scale_0.1 10.64
|
446 |
+
ngram_lm_scale_0.1_attention_scale_0.08 10.64
|
447 |
+
ngram_lm_scale_0.3_attention_scale_0.01 10.64
|
448 |
+
ngram_lm_scale_1.1_attention_scale_1.2 10.64
|
449 |
+
ngram_lm_scale_0.01_attention_scale_0.3 10.65
|
450 |
+
ngram_lm_scale_0.5_attention_scale_0.1 10.65
|
451 |
+
ngram_lm_scale_0.7_attention_scale_0.3 10.65
|
452 |
+
ngram_lm_scale_1.5_attention_scale_2.1 10.65
|
453 |
+
ngram_lm_scale_0.08_attention_scale_0.08 10.66
|
454 |
+
ngram_lm_scale_0.1_attention_scale_0.05 10.66
|
455 |
+
ngram_lm_scale_0.5_attention_scale_0.08 10.66
|
456 |
+
ngram_lm_scale_0.9_attention_scale_0.7 10.66
|
457 |
+
ngram_lm_scale_2.2_attention_scale_4.0 10.66
|
458 |
+
ngram_lm_scale_0.1_attention_scale_0.01 10.67
|
459 |
+
ngram_lm_scale_1.0_attention_scale_0.9 10.67
|
460 |
+
ngram_lm_scale_1.1_attention_scale_1.1 10.67
|
461 |
+
ngram_lm_scale_1.7_attention_scale_2.5 10.67
|
462 |
+
ngram_lm_scale_0.05_attention_scale_0.1 10.68
|
463 |
+
ngram_lm_scale_0.5_attention_scale_0.05 10.68
|
464 |
+
ngram_lm_scale_1.5_attention_scale_2.0 10.68
|
465 |
+
ngram_lm_scale_0.05_attention_scale_0.08 10.69
|
466 |
+
ngram_lm_scale_0.08_attention_scale_0.05 10.69
|
467 |
+
ngram_lm_scale_1.2_attention_scale_1.3 10.69
|
468 |
+
ngram_lm_scale_1.9_attention_scale_3.0 10.69
|
469 |
+
ngram_lm_scale_0.08_attention_scale_0.01 10.7
|
470 |
+
ngram_lm_scale_0.6_attention_scale_0.1 10.7
|
471 |
+
ngram_lm_scale_1.3_attention_scale_1.5 10.7
|
472 |
+
ngram_lm_scale_2.3_attention_scale_4.0 10.7
|
473 |
+
ngram_lm_scale_0.05_attention_scale_0.05 10.71
|
474 |
+
ngram_lm_scale_0.5_attention_scale_0.01 10.71
|
475 |
+
ngram_lm_scale_0.9_attention_scale_0.6 10.71
|
476 |
+
ngram_lm_scale_1.1_attention_scale_1.0 10.71
|
477 |
+
ngram_lm_scale_1.5_attention_scale_1.9 10.71
|
478 |
+
ngram_lm_scale_0.01_attention_scale_0.1 10.72
|
479 |
+
ngram_lm_scale_0.01_attention_scale_0.08 10.73
|
480 |
+
ngram_lm_scale_0.05_attention_scale_0.01 10.73
|
481 |
+
ngram_lm_scale_0.6_attention_scale_0.08 10.73
|
482 |
+
ngram_lm_scale_1.2_attention_scale_1.2 10.73
|
483 |
+
ngram_lm_scale_0.01_attention_scale_0.05 10.75
|
484 |
+
ngram_lm_scale_0.9_attention_scale_0.5 10.75
|
485 |
+
ngram_lm_scale_1.0_attention_scale_0.7 10.75
|
486 |
+
ngram_lm_scale_1.1_attention_scale_0.9 10.75
|
487 |
+
ngram_lm_scale_1.2_attention_scale_1.1 10.75
|
488 |
+
ngram_lm_scale_1.3_attention_scale_1.3 10.76
|
489 |
+
ngram_lm_scale_1.7_attention_scale_2.3 10.76
|
490 |
+
ngram_lm_scale_2.0_attention_scale_3.0 10.77
|
491 |
+
ngram_lm_scale_0.6_attention_scale_0.05 10.78
|
492 |
+
ngram_lm_scale_0.01_attention_scale_0.01 10.79
|
493 |
+
ngram_lm_scale_1.5_attention_scale_1.7 10.79
|
494 |
+
ngram_lm_scale_1.7_attention_scale_2.2 10.79
|
495 |
+
ngram_lm_scale_1.2_attention_scale_1.0 10.8
|
496 |
+
ngram_lm_scale_1.3_attention_scale_1.2 10.8
|
497 |
+
ngram_lm_scale_2.5_attention_scale_4.0 10.81
|
498 |
+
ngram_lm_scale_1.7_attention_scale_2.1 10.82
|
499 |
+
ngram_lm_scale_1.0_attention_scale_0.6 10.83
|
500 |
+
ngram_lm_scale_2.1_attention_scale_3.0 10.84
|
501 |
+
ngram_lm_scale_0.6_attention_scale_0.01 10.85
|
502 |
+
ngram_lm_scale_1.7_attention_scale_2.0 10.85
|
503 |
+
ngram_lm_scale_1.9_attention_scale_2.5 10.85
|
504 |
+
ngram_lm_scale_3.0_attention_scale_5.0 10.86
|
505 |
+
ngram_lm_scale_1.3_attention_scale_1.1 10.87
|
506 |
+
ngram_lm_scale_0.7_attention_scale_0.1 10.88
|
507 |
+
ngram_lm_scale_1.5_attention_scale_1.5 10.88
|
508 |
+
ngram_lm_scale_1.2_attention_scale_0.9 10.89
|
509 |
+
ngram_lm_scale_1.7_attention_scale_1.9 10.89
|
510 |
+
ngram_lm_scale_2.2_attention_scale_3.0 10.9
|
511 |
+
ngram_lm_scale_1.1_attention_scale_0.7 10.91
|
512 |
+
ngram_lm_scale_1.9_attention_scale_2.3 10.91
|
513 |
+
ngram_lm_scale_2.0_attention_scale_2.5 10.91
|
514 |
+
ngram_lm_scale_0.7_attention_scale_0.08 10.92
|
515 |
+
ngram_lm_scale_0.7_attention_scale_0.05 10.96
|
516 |
+
ngram_lm_scale_1.0_attention_scale_0.5 10.96
|
517 |
+
ngram_lm_scale_1.9_attention_scale_2.2 10.97
|
518 |
+
ngram_lm_scale_2.3_attention_scale_3.0 10.97
|
519 |
+
ngram_lm_scale_1.3_attention_scale_1.0 10.99
|
520 |
+
ngram_lm_scale_1.7_attention_scale_1.7 11.01
|
521 |
+
ngram_lm_scale_2.1_attention_scale_2.5 11.02
|
522 |
+
ngram_lm_scale_0.9_attention_scale_0.3 11.03
|
523 |
+
ngram_lm_scale_1.9_attention_scale_2.1 11.03
|
524 |
+
ngram_lm_scale_0.7_attention_scale_0.01 11.04
|
525 |
+
ngram_lm_scale_1.5_attention_scale_1.3 11.04
|
526 |
+
ngram_lm_scale_2.0_attention_scale_2.3 11.04
|
527 |
+
ngram_lm_scale_1.1_attention_scale_0.6 11.05
|
528 |
+
ngram_lm_scale_1.9_attention_scale_2.0 11.1
|
529 |
+
ngram_lm_scale_2.0_attention_scale_2.2 11.1
|
530 |
+
ngram_lm_scale_1.3_attention_scale_0.9 11.11
|
531 |
+
ngram_lm_scale_1.2_attention_scale_0.7 11.14
|
532 |
+
ngram_lm_scale_1.5_attention_scale_1.2 11.15
|
533 |
+
ngram_lm_scale_2.2_attention_scale_2.5 11.16
|
534 |
+
ngram_lm_scale_2.1_attention_scale_2.3 11.17
|
535 |
+
ngram_lm_scale_3.0_attention_scale_4.0 11.17
|
536 |
+
ngram_lm_scale_1.9_attention_scale_1.9 11.18
|
537 |
+
ngram_lm_scale_2.0_attention_scale_2.1 11.18
|
538 |
+
ngram_lm_scale_1.1_attention_scale_0.5 11.19
|
539 |
+
ngram_lm_scale_2.5_attention_scale_3.0 11.19
|
540 |
+
ngram_lm_scale_1.7_attention_scale_1.5 11.21
|
541 |
+
ngram_lm_scale_2.1_attention_scale_2.2 11.25
|
542 |
+
ngram_lm_scale_1.2_attention_scale_0.6 11.26
|
543 |
+
ngram_lm_scale_1.5_attention_scale_1.1 11.26
|
544 |
+
ngram_lm_scale_2.0_attention_scale_2.0 11.26
|
545 |
+
ngram_lm_scale_1.0_attention_scale_0.3 11.29
|
546 |
+
ngram_lm_scale_2.3_attention_scale_2.5 11.3
|
547 |
+
ngram_lm_scale_2.2_attention_scale_2.3 11.31
|
548 |
+
ngram_lm_scale_2.1_attention_scale_2.1 11.32
|
549 |
+
ngram_lm_scale_2.0_attention_scale_1.9 11.34
|
550 |
+
ngram_lm_scale_1.3_attention_scale_0.7 11.36
|
551 |
+
ngram_lm_scale_1.9_attention_scale_1.7 11.37
|
552 |
+
ngram_lm_scale_1.5_attention_scale_1.0 11.4
|
553 |
+
ngram_lm_scale_2.2_attention_scale_2.2 11.4
|
554 |
+
ngram_lm_scale_2.1_attention_scale_2.0 11.41
|
555 |
+
ngram_lm_scale_0.9_attention_scale_0.1 11.42
|
556 |
+
ngram_lm_scale_1.7_attention_scale_1.3 11.44
|
557 |
+
ngram_lm_scale_1.2_attention_scale_0.5 11.45
|
558 |
+
ngram_lm_scale_0.9_attention_scale_0.08 11.47
|
559 |
+
ngram_lm_scale_2.3_attention_scale_2.3 11.48
|
560 |
+
ngram_lm_scale_2.2_attention_scale_2.1 11.51
|
561 |
+
ngram_lm_scale_2.1_attention_scale_1.9 11.54
|
562 |
+
ngram_lm_scale_1.3_attention_scale_0.6 11.55
|
563 |
+
ngram_lm_scale_1.5_attention_scale_0.9 11.56
|
564 |
+
ngram_lm_scale_0.9_attention_scale_0.05 11.57
|
565 |
+
ngram_lm_scale_2.0_attention_scale_1.7 11.57
|
566 |
+
ngram_lm_scale_2.3_attention_scale_2.2 11.58
|
567 |
+
ngram_lm_scale_1.1_attention_scale_0.3 11.59
|
568 |
+
ngram_lm_scale_1.7_attention_scale_1.2 11.59
|
569 |
+
ngram_lm_scale_1.9_attention_scale_1.5 11.63
|
570 |
+
ngram_lm_scale_2.2_attention_scale_2.0 11.63
|
571 |
+
ngram_lm_scale_2.5_attention_scale_2.5 11.63
|
572 |
+
ngram_lm_scale_4.0_attention_scale_5.0 11.67
|
573 |
+
ngram_lm_scale_2.3_attention_scale_2.1 11.7
|
574 |
+
ngram_lm_scale_0.9_attention_scale_0.01 11.71
|
575 |
+
ngram_lm_scale_2.2_attention_scale_1.9 11.73
|
576 |
+
ngram_lm_scale_1.3_attention_scale_0.5 11.76
|
577 |
+
ngram_lm_scale_1.7_attention_scale_1.1 11.76
|
578 |
+
ngram_lm_scale_1.0_attention_scale_0.1 11.78
|
579 |
+
ngram_lm_scale_2.1_attention_scale_1.7 11.8
|
580 |
+
ngram_lm_scale_2.3_attention_scale_2.0 11.8
|
581 |
+
ngram_lm_scale_2.5_attention_scale_2.3 11.83
|
582 |
+
ngram_lm_scale_2.0_attention_scale_1.5 11.86
|
583 |
+
ngram_lm_scale_1.0_attention_scale_0.08 11.89
|
584 |
+
ngram_lm_scale_1.9_attention_scale_1.3 11.93
|
585 |
+
ngram_lm_scale_3.0_attention_scale_3.0 11.94
|
586 |
+
ngram_lm_scale_1.2_attention_scale_0.3 11.95
|
587 |
+
ngram_lm_scale_1.7_attention_scale_1.0 11.95
|
588 |
+
ngram_lm_scale_2.3_attention_scale_1.9 11.95
|
589 |
+
ngram_lm_scale_2.5_attention_scale_2.2 11.96
|
590 |
+
ngram_lm_scale_1.5_attention_scale_0.7 11.98
|
591 |
+
ngram_lm_scale_1.0_attention_scale_0.05 12.0
|
592 |
+
ngram_lm_scale_2.2_attention_scale_1.7 12.02
|
593 |
+
ngram_lm_scale_2.1_attention_scale_1.5 12.09
|
594 |
+
ngram_lm_scale_2.5_attention_scale_2.1 12.09
|
595 |
+
ngram_lm_scale_1.9_attention_scale_1.2 12.12
|
596 |
+
ngram_lm_scale_1.7_attention_scale_0.9 12.16
|
597 |
+
ngram_lm_scale_1.0_attention_scale_0.01 12.19
|
598 |
+
ngram_lm_scale_2.0_attention_scale_1.3 12.2
|
599 |
+
ngram_lm_scale_2.5_attention_scale_2.0 12.22
|
600 |
+
ngram_lm_scale_1.5_attention_scale_0.6 12.24
|
601 |
+
ngram_lm_scale_2.3_attention_scale_1.7 12.24
|
602 |
+
ngram_lm_scale_1.1_attention_scale_0.1 12.27
|
603 |
+
ngram_lm_scale_1.9_attention_scale_1.1 12.3
|
604 |
+
ngram_lm_scale_4.0_attention_scale_4.0 12.31
|
605 |
+
ngram_lm_scale_2.2_attention_scale_1.5 12.32
|
606 |
+
ngram_lm_scale_2.5_attention_scale_1.9 12.35
|
607 |
+
ngram_lm_scale_1.1_attention_scale_0.08 12.36
|
608 |
+
ngram_lm_scale_2.0_attention_scale_1.2 12.37
|
609 |
+
ngram_lm_scale_1.3_attention_scale_0.3 12.4
|
610 |
+
ngram_lm_scale_2.1_attention_scale_1.3 12.43
|
611 |
+
ngram_lm_scale_3.0_attention_scale_2.5 12.46
|
612 |
+
ngram_lm_scale_1.1_attention_scale_0.05 12.51
|
613 |
+
ngram_lm_scale_1.9_attention_scale_1.0 12.52
|
614 |
+
ngram_lm_scale_2.3_attention_scale_1.5 12.53
|
615 |
+
ngram_lm_scale_1.5_attention_scale_0.5 12.54
|
616 |
+
ngram_lm_scale_2.0_attention_scale_1.1 12.58
|
617 |
+
ngram_lm_scale_5.0_attention_scale_5.0 12.62
|
618 |
+
ngram_lm_scale_2.1_attention_scale_1.2 12.63
|
619 |
+
ngram_lm_scale_2.5_attention_scale_1.7 12.64
|
620 |
+
ngram_lm_scale_1.7_attention_scale_0.7 12.68
|
621 |
+
ngram_lm_scale_2.2_attention_scale_1.3 12.68
|
622 |
+
ngram_lm_scale_1.1_attention_scale_0.01 12.72
|
623 |
+
ngram_lm_scale_3.0_attention_scale_2.3 12.72
|
624 |
+
ngram_lm_scale_1.9_attention_scale_0.9 12.78
|
625 |
+
ngram_lm_scale_1.2_attention_scale_0.1 12.79
|
626 |
+
ngram_lm_scale_2.0_attention_scale_1.0 12.82
|
627 |
+
ngram_lm_scale_2.1_attention_scale_1.1 12.86
|
628 |
+
ngram_lm_scale_3.0_attention_scale_2.2 12.87
|
629 |
+
ngram_lm_scale_1.2_attention_scale_0.08 12.88
|
630 |
+
ngram_lm_scale_2.2_attention_scale_1.2 12.92
|
631 |
+
ngram_lm_scale_2.3_attention_scale_1.3 12.97
|
632 |
+
ngram_lm_scale_1.7_attention_scale_0.6 12.98
|
633 |
+
ngram_lm_scale_3.0_attention_scale_2.1 13.03
|
634 |
+
ngram_lm_scale_2.5_attention_scale_1.5 13.04
|
635 |
+
ngram_lm_scale_1.2_attention_scale_0.05 13.05
|
636 |
+
ngram_lm_scale_2.0_attention_scale_0.9 13.11
|
637 |
+
ngram_lm_scale_2.1_attention_scale_1.0 13.17
|
638 |
+
ngram_lm_scale_2.2_attention_scale_1.1 13.2
|
639 |
+
ngram_lm_scale_3.0_attention_scale_2.0 13.2
|
640 |
+
ngram_lm_scale_2.3_attention_scale_1.2 13.24
|
641 |
+
ngram_lm_scale_1.2_attention_scale_0.01 13.27
|
642 |
+
ngram_lm_scale_1.3_attention_scale_0.1 13.3
|
643 |
+
ngram_lm_scale_1.5_attention_scale_0.3 13.32
|
644 |
+
ngram_lm_scale_1.7_attention_scale_0.5 13.33
|
645 |
+
ngram_lm_scale_1.3_attention_scale_0.08 13.4
|
646 |
+
ngram_lm_scale_4.0_attention_scale_3.0 13.41
|
647 |
+
ngram_lm_scale_1.9_attention_scale_0.7 13.42
|
648 |
+
ngram_lm_scale_3.0_attention_scale_1.9 13.42
|
649 |
+
ngram_lm_scale_2.1_attention_scale_0.9 13.45
|
650 |
+
ngram_lm_scale_2.2_attention_scale_1.0 13.46
|
651 |
+
ngram_lm_scale_2.3_attention_scale_1.1 13.47
|
652 |
+
ngram_lm_scale_2.5_attention_scale_1.3 13.53
|
653 |
+
ngram_lm_scale_1.3_attention_scale_0.05 13.56
|
654 |
+
ngram_lm_scale_5.0_attention_scale_4.0 13.57
|
655 |
+
ngram_lm_scale_2.0_attention_scale_0.7 13.73
|
656 |
+
ngram_lm_scale_2.2_attention_scale_0.9 13.74
|
657 |
+
ngram_lm_scale_1.9_attention_scale_0.6 13.75
|
658 |
+
ngram_lm_scale_2.3_attention_scale_1.0 13.75
|
659 |
+
ngram_lm_scale_2.5_attention_scale_1.2 13.78
|
660 |
+
ngram_lm_scale_1.3_attention_scale_0.01 13.81
|
661 |
+
ngram_lm_scale_3.0_attention_scale_1.7 13.84
|
662 |
+
ngram_lm_scale_2.5_attention_scale_1.1 14.05
|
663 |
+
ngram_lm_scale_2.1_attention_scale_0.7 14.07
|
664 |
+
ngram_lm_scale_2.3_attention_scale_0.9 14.07
|
665 |
+
ngram_lm_scale_2.0_attention_scale_0.6 14.1
|
666 |
+
ngram_lm_scale_1.9_attention_scale_0.5 14.14
|
667 |
+
ngram_lm_scale_1.7_attention_scale_0.3 14.18
|
668 |
+
ngram_lm_scale_4.0_attention_scale_2.5 14.2
|
669 |
+
ngram_lm_scale_3.0_attention_scale_1.5 14.28
|
670 |
+
ngram_lm_scale_1.5_attention_scale_0.1 14.3
|
671 |
+
ngram_lm_scale_2.5_attention_scale_1.0 14.35
|
672 |
+
ngram_lm_scale_1.5_attention_scale_0.08 14.41
|
673 |
+
ngram_lm_scale_2.2_attention_scale_0.7 14.42
|
674 |
+
ngram_lm_scale_2.1_attention_scale_0.6 14.47
|
675 |
+
ngram_lm_scale_2.0_attention_scale_0.5 14.51
|
676 |
+
ngram_lm_scale_4.0_attention_scale_2.3 14.56
|
677 |
+
ngram_lm_scale_1.5_attention_scale_0.05 14.57
|
678 |
+
ngram_lm_scale_2.5_attention_scale_0.9 14.66
|
679 |
+
ngram_lm_scale_2.3_attention_scale_0.7 14.72
|
680 |
+
ngram_lm_scale_4.0_attention_scale_2.2 14.75
|
681 |
+
ngram_lm_scale_2.2_attention_scale_0.6 14.76
|
682 |
+
ngram_lm_scale_3.0_attention_scale_1.3 14.76
|
683 |
+
ngram_lm_scale_2.1_attention_scale_0.5 14.8
|
684 |
+
ngram_lm_scale_1.5_attention_scale_0.01 14.82
|
685 |
+
ngram_lm_scale_5.0_attention_scale_3.0 14.84
|
686 |
+
ngram_lm_scale_4.0_attention_scale_2.1 14.9
|
687 |
+
ngram_lm_scale_1.9_attention_scale_0.3 14.93
|
688 |
+
ngram_lm_scale_3.0_attention_scale_1.2 14.98
|
689 |
+
ngram_lm_scale_2.3_attention_scale_0.6 15.04
|
690 |
+
ngram_lm_scale_4.0_attention_scale_2.0 15.07
|
691 |
+
ngram_lm_scale_2.2_attention_scale_0.5 15.13
|
692 |
+
ngram_lm_scale_1.7_attention_scale_0.1 15.2
|
693 |
+
ngram_lm_scale_3.0_attention_scale_1.1 15.24
|
694 |
+
ngram_lm_scale_4.0_attention_scale_1.9 15.25
|
695 |
+
ngram_lm_scale_2.5_attention_scale_0.7 15.26
|
696 |
+
ngram_lm_scale_1.7_attention_scale_0.08 15.3
|
697 |
+
ngram_lm_scale_2.0_attention_scale_0.3 15.31
|
698 |
+
ngram_lm_scale_2.3_attention_scale_0.5 15.41
|
699 |
+
ngram_lm_scale_1.7_attention_scale_0.05 15.48
|
700 |
+
ngram_lm_scale_3.0_attention_scale_1.0 15.54
|
701 |
+
ngram_lm_scale_2.5_attention_scale_0.6 15.59
|
702 |
+
ngram_lm_scale_5.0_attention_scale_2.5 15.61
|
703 |
+
ngram_lm_scale_2.1_attention_scale_0.3 15.62
|
704 |
+
ngram_lm_scale_4.0_attention_scale_1.7 15.66
|
705 |
+
ngram_lm_scale_1.7_attention_scale_0.01 15.73
|
706 |
+
ngram_lm_scale_3.0_attention_scale_0.9 15.8
|
707 |
+
ngram_lm_scale_5.0_attention_scale_2.3 15.9
|
708 |
+
ngram_lm_scale_1.9_attention_scale_0.1 15.91
|
709 |
+
ngram_lm_scale_2.2_attention_scale_0.3 15.93
|
710 |
+
ngram_lm_scale_2.5_attention_scale_0.5 15.96
|
711 |
+
ngram_lm_scale_1.9_attention_scale_0.08 16.02
|
712 |
+
ngram_lm_scale_4.0_attention_scale_1.5 16.04
|
713 |
+
ngram_lm_scale_5.0_attention_scale_2.2 16.04
|
714 |
+
ngram_lm_scale_1.9_attention_scale_0.05 16.18
|
715 |
+
ngram_lm_scale_5.0_attention_scale_2.1 16.2
|
716 |
+
ngram_lm_scale_2.3_attention_scale_0.3 16.21
|
717 |
+
ngram_lm_scale_2.0_attention_scale_0.1 16.25
|
718 |
+
ngram_lm_scale_3.0_attention_scale_0.7 16.34
|
719 |
+
ngram_lm_scale_2.0_attention_scale_0.08 16.35
|
720 |
+
ngram_lm_scale_5.0_attention_scale_2.0 16.37
|
721 |
+
ngram_lm_scale_1.9_attention_scale_0.01 16.42
|
722 |
+
ngram_lm_scale_4.0_attention_scale_1.3 16.45
|
723 |
+
ngram_lm_scale_2.0_attention_scale_0.05 16.5
|
724 |
+
ngram_lm_scale_5.0_attention_scale_1.9 16.52
|
725 |
+
ngram_lm_scale_2.1_attention_scale_0.1 16.55
|
726 |
+
ngram_lm_scale_4.0_attention_scale_1.2 16.62
|
727 |
+
ngram_lm_scale_2.1_attention_scale_0.08 16.64
|
728 |
+
ngram_lm_scale_3.0_attention_scale_0.6 16.64
|
729 |
+
ngram_lm_scale_2.5_attention_scale_0.3 16.67
|
730 |
+
ngram_lm_scale_2.0_attention_scale_0.01 16.71
|
731 |
+
ngram_lm_scale_2.1_attention_scale_0.05 16.77
|
732 |
+
ngram_lm_scale_2.2_attention_scale_0.1 16.8
|
733 |
+
ngram_lm_scale_5.0_attention_scale_1.7 16.82
|
734 |
+
ngram_lm_scale_4.0_attention_scale_1.1 16.84
|
735 |
+
ngram_lm_scale_2.2_attention_scale_0.08 16.89
|
736 |
+
ngram_lm_scale_3.0_attention_scale_0.5 16.95
|
737 |
+
ngram_lm_scale_2.1_attention_scale_0.01 16.99
|
738 |
+
ngram_lm_scale_2.2_attention_scale_0.05 17.02
|
739 |
+
ngram_lm_scale_2.3_attention_scale_0.1 17.02
|
740 |
+
ngram_lm_scale_4.0_attention_scale_1.0 17.07
|
741 |
+
ngram_lm_scale_2.3_attention_scale_0.08 17.09
|
742 |
+
ngram_lm_scale_5.0_attention_scale_1.5 17.16
|
743 |
+
ngram_lm_scale_2.2_attention_scale_0.01 17.18
|
744 |
+
ngram_lm_scale_2.3_attention_scale_0.05 17.2
|
745 |
+
ngram_lm_scale_4.0_attention_scale_0.9 17.24
|
746 |
+
ngram_lm_scale_2.3_attention_scale_0.01 17.38
|
747 |
+
ngram_lm_scale_2.5_attention_scale_0.1 17.4
|
748 |
+
ngram_lm_scale_5.0_attention_scale_1.3 17.45
|
749 |
+
ngram_lm_scale_2.5_attention_scale_0.08 17.47
|
750 |
+
ngram_lm_scale_3.0_attention_scale_0.3 17.53
|
751 |
+
ngram_lm_scale_2.5_attention_scale_0.05 17.58
|
752 |
+
ngram_lm_scale_5.0_attention_scale_1.2 17.63
|
753 |
+
ngram_lm_scale_2.5_attention_scale_0.01 17.7
|
754 |
+
ngram_lm_scale_4.0_attention_scale_0.7 17.7
|
755 |
+
ngram_lm_scale_5.0_attention_scale_1.1 17.8
|
756 |
+
ngram_lm_scale_4.0_attention_scale_0.6 17.89
|
757 |
+
ngram_lm_scale_5.0_attention_scale_1.0 17.94
|
758 |
+
ngram_lm_scale_3.0_attention_scale_0.1 18.09
|
759 |
+
ngram_lm_scale_4.0_attention_scale_0.5 18.09
|
760 |
+
ngram_lm_scale_5.0_attention_scale_0.9 18.09
|
761 |
+
ngram_lm_scale_3.0_attention_scale_0.08 18.14
|
762 |
+
ngram_lm_scale_3.0_attention_scale_0.05 18.21
|
763 |
+
ngram_lm_scale_3.0_attention_scale_0.01 18.31
|
764 |
+
ngram_lm_scale_5.0_attention_scale_0.7 18.41
|
765 |
+
ngram_lm_scale_4.0_attention_scale_0.3 18.49
|
766 |
+
ngram_lm_scale_5.0_attention_scale_0.6 18.57
|
767 |
+
ngram_lm_scale_5.0_attention_scale_0.5 18.71
|
768 |
+
ngram_lm_scale_4.0_attention_scale_0.1 18.85
|
769 |
+
ngram_lm_scale_4.0_attention_scale_0.08 18.88
|
770 |
+
ngram_lm_scale_4.0_attention_scale_0.05 18.95
|
771 |
+
ngram_lm_scale_5.0_attention_scale_0.3 19.01
|
772 |
+
ngram_lm_scale_4.0_attention_scale_0.01 19.02
|
773 |
+
ngram_lm_scale_5.0_attention_scale_0.1 19.3
|
774 |
+
ngram_lm_scale_5.0_attention_scale_0.08 19.32
|
775 |
+
ngram_lm_scale_5.0_attention_scale_0.05 19.37
|
776 |
+
ngram_lm_scale_5.0_attention_scale_0.01 19.43
|
777 |
+
|
778 |
+
2022-04-08 23:20:49,165 INFO [decode.py:730] Done!
|
log/log-decode-2022-04-09-01-40-41
ADDED
@@ -0,0 +1,1176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2022-04-09 01:40:41,909 INFO [decode_test.py:583] Decoding started
|
2 |
+
2022-04-09 01:40:41,910 INFO [decode_test.py:584] {'subsampling_factor': 4, 'vgg_frontend': False, 'use_feat_batchnorm': True, 'feature_dim': 80, 'nhead': 8, 'attention_dim': 512, 'num_decoder_layers': 6, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True, 'env_info': {'k2-version': '1.14', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': '6833270cb228aba7bf9681fccd41e2b52f7d984c', 'k2-git-date': 'Wed Mar 16 11:16:05 2022', 'lhotse-version': '1.0.0.dev+git.d917411.clean', 'torch-cuda-available': True, 'torch-cuda-version': '11.1', 'python-version': '3.7', 'icefall-git-branch': 'gigaspeech_recipe', 'icefall-git-sha1': 'c3993a5-dirty', 'icefall-git-date': 'Mon Mar 21 13:49:39 2022', 'icefall-path': '/userhome/user/guanbo/icefall_decode', 'k2-path': '/opt/conda/lib/python3.7/site-packages/k2-1.14.dev20220408+cuda11.1.torch1.10.0-py3.7-linux-x86_64.egg/k2/__init__.py', 'lhotse-path': '/userhome/user/guanbo/lhotse/lhotse/__init__.py', 'hostname': 'c8861f400b70d011ec0a3ee069db84328338-chenx8564-0', 'IP address': '10.9.150.55'}, 'epoch': 18, 'avg': 6, 'method': 'attention-decoder', 'num_paths': 1000, 'nbest_scale': 0.5, 'exp_dir': PosixPath('conformer_ctc/exp_500_8_2'), 'lang_dir': PosixPath('data/lang_bpe_500'), 'lm_dir': PosixPath('data/lm'), 'manifest_dir': PosixPath('data/fbank'), 'max_duration': 20, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'return_cuts': True, 'num_workers': 1, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'subset': 'XL', 'lazy_load': True, 'small_dev': False}
|
3 |
+
2022-04-09 01:40:42,371 INFO [lexicon.py:176] Loading pre-compiled data/lang_bpe_500/Linv.pt
|
4 |
+
2022-04-09 01:40:42,473 INFO [decode_test.py:594] device: cuda:0
|
5 |
+
2022-04-09 01:40:46,249 INFO [decode_test.py:656] Loading pre-compiled G_4_gram.pt
|
6 |
+
2022-04-09 01:40:47,406 INFO [decode_test.py:692] averaging ['conformer_ctc/exp_500_8_2/epoch-13.pt', 'conformer_ctc/exp_500_8_2/epoch-14.pt', 'conformer_ctc/exp_500_8_2/epoch-15.pt', 'conformer_ctc/exp_500_8_2/epoch-16.pt', 'conformer_ctc/exp_500_8_2/epoch-17.pt', 'conformer_ctc/exp_500_8_2/epoch-18.pt']
|
7 |
+
2022-04-09 01:40:53,065 INFO [decode_test.py:699] Number of model parameters: 109226120
|
8 |
+
2022-04-09 01:40:53,065 INFO [asr_datamodule.py:381] About to get test cuts
|
9 |
+
2022-04-09 01:40:56,361 INFO [decode_test.py:497] batch 0/?, cuts processed until now is 3
|
10 |
+
2022-04-09 01:41:24,462 INFO [decode.py:736] Caught exception:
|
11 |
+
CUDA out of memory. Tried to allocate 5.93 GiB (GPU 0; 31.75 GiB total capacity; 27.23 GiB already allocated; 1.90 GiB free; 28.49 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
12 |
+
|
13 |
+
2022-04-09 01:41:24,462 INFO [decode.py:743] num_arcs before pruning: 324363
|
14 |
+
2022-04-09 01:41:24,462 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
15 |
+
2022-04-09 01:41:24,473 INFO [decode.py:757] num_arcs after pruning: 7174
|
16 |
+
2022-04-09 01:41:40,284 INFO [decode.py:736] Caught exception:
|
17 |
+
CUDA out of memory. Tried to allocate 4.67 GiB (GPU 0; 31.75 GiB total capacity; 25.69 GiB already allocated; 2.92 GiB free; 27.47 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
18 |
+
|
19 |
+
2022-04-09 01:41:40,285 INFO [decode.py:743] num_arcs before pruning: 368362
|
20 |
+
2022-04-09 01:41:40,285 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
21 |
+
2022-04-09 01:41:40,305 INFO [decode.py:757] num_arcs after pruning: 8521
|
22 |
+
2022-04-09 01:42:38,727 INFO [decode.py:736] Caught exception:
|
23 |
+
CUDA out of memory. Tried to allocate 2.18 GiB (GPU 0; 31.75 GiB total capacity; 26.05 GiB already allocated; 1.42 GiB free; 28.98 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
24 |
+
|
25 |
+
2022-04-09 01:42:38,727 INFO [decode.py:743] num_arcs before pruning: 432616
|
26 |
+
2022-04-09 01:42:38,728 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
27 |
+
2022-04-09 01:42:38,736 INFO [decode.py:757] num_arcs after pruning: 9233
|
28 |
+
2022-04-09 01:43:13,573 INFO [decode_test.py:497] batch 100/?, cuts processed until now is 297
|
29 |
+
2022-04-09 01:43:48,362 INFO [decode.py:736] Caught exception:
|
30 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 25.34 GiB already allocated; 2.20 GiB free; 28.20 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
31 |
+
|
32 |
+
2022-04-09 01:43:48,363 INFO [decode.py:743] num_arcs before pruning: 319907
|
33 |
+
2022-04-09 01:43:48,363 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
34 |
+
2022-04-09 01:43:48,372 INFO [decode.py:757] num_arcs after pruning: 6358
|
35 |
+
2022-04-09 01:43:59,713 INFO [decode.py:736] Caught exception:
|
36 |
+
CUDA out of memory. Tried to allocate 2.74 GiB (GPU 0; 31.75 GiB total capacity; 27.51 GiB already allocated; 2.19 GiB free; 28.20 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
37 |
+
|
38 |
+
2022-04-09 01:43:59,713 INFO [decode.py:743] num_arcs before pruning: 313596
|
39 |
+
2022-04-09 01:43:59,713 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
40 |
+
2022-04-09 01:43:59,724 INFO [decode.py:757] num_arcs after pruning: 8252
|
41 |
+
2022-04-09 01:44:54,463 INFO [decode.py:736] Caught exception:
|
42 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 25.25 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
43 |
+
|
44 |
+
2022-04-09 01:44:54,463 INFO [decode.py:743] num_arcs before pruning: 353355
|
45 |
+
2022-04-09 01:44:54,463 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
46 |
+
2022-04-09 01:44:54,485 INFO [decode.py:757] num_arcs after pruning: 7520
|
47 |
+
2022-04-09 01:45:20,716 INFO [decode_test.py:497] batch 200/?, cuts processed until now is 570
|
48 |
+
2022-04-09 01:47:19,457 INFO [decode_test.py:497] batch 300/?, cuts processed until now is 806
|
49 |
+
2022-04-09 01:47:38,292 INFO [decode.py:736] Caught exception:
|
50 |
+
CUDA out of memory. Tried to allocate 2.28 GiB (GPU 0; 31.75 GiB total capacity; 26.28 GiB already allocated; 1.48 GiB free; 28.92 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
51 |
+
|
52 |
+
2022-04-09 01:47:38,293 INFO [decode.py:743] num_arcs before pruning: 596002
|
53 |
+
2022-04-09 01:47:38,293 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
54 |
+
2022-04-09 01:47:38,312 INFO [decode.py:757] num_arcs after pruning: 10745
|
55 |
+
2022-04-09 01:49:18,493 INFO [decode.py:736] Caught exception:
|
56 |
+
|
57 |
+
Some bad things happened. Please read the above error messages and stack
|
58 |
+
trace. If you are using Python, the following command may be helpful:
|
59 |
+
|
60 |
+
gdb --args python /path/to/your/code.py
|
61 |
+
|
62 |
+
(You can use `gdb` to debug the code. Please consider compiling
|
63 |
+
a debug version of k2.).
|
64 |
+
|
65 |
+
If you are unable to fix it, please open an issue at:
|
66 |
+
|
67 |
+
https://github.com/k2-fsa/k2/issues/new
|
68 |
+
|
69 |
+
|
70 |
+
2022-04-09 01:49:18,494 INFO [decode.py:743] num_arcs before pruning: 398202
|
71 |
+
2022-04-09 01:49:18,494 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
72 |
+
2022-04-09 01:49:18,541 INFO [decode.py:757] num_arcs after pruning: 14003
|
73 |
+
2022-04-09 01:49:21,800 INFO [decode_test.py:497] batch 400/?, cuts processed until now is 1082
|
74 |
+
2022-04-09 01:50:58,700 INFO [decode.py:736] Caught exception:
|
75 |
+
CUDA out of memory. Tried to allocate 4.85 GiB (GPU 0; 31.75 GiB total capacity; 25.89 GiB already allocated; 1.48 GiB free; 28.92 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
76 |
+
|
77 |
+
2022-04-09 01:50:58,701 INFO [decode.py:743] num_arcs before pruning: 398349
|
78 |
+
2022-04-09 01:50:58,701 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
79 |
+
2022-04-09 01:50:58,709 INFO [decode.py:757] num_arcs after pruning: 10321
|
80 |
+
2022-04-09 01:51:31,627 INFO [decode_test.py:497] batch 500/?, cuts processed until now is 1334
|
81 |
+
2022-04-09 01:52:05,232 INFO [decode.py:736] Caught exception:
|
82 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.62 GiB already allocated; 1.47 GiB free; 28.93 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
83 |
+
|
84 |
+
2022-04-09 01:52:05,232 INFO [decode.py:743] num_arcs before pruning: 212665
|
85 |
+
2022-04-09 01:52:05,232 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
86 |
+
2022-04-09 01:52:05,241 INFO [decode.py:757] num_arcs after pruning: 6301
|
87 |
+
2022-04-09 01:53:29,890 INFO [decode.py:736] Caught exception:
|
88 |
+
CUDA out of memory. Tried to allocate 1.91 GiB (GPU 0; 31.75 GiB total capacity; 25.66 GiB already allocated; 1.48 GiB free; 28.92 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
89 |
+
|
90 |
+
2022-04-09 01:53:29,891 INFO [decode.py:743] num_arcs before pruning: 883555
|
91 |
+
2022-04-09 01:53:29,891 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
92 |
+
2022-04-09 01:53:29,905 INFO [decode.py:757] num_arcs after pruning: 14819
|
93 |
+
2022-04-09 01:53:38,676 INFO [decode_test.py:497] batch 600/?, cuts processed until now is 1651
|
94 |
+
2022-04-09 01:54:57,438 INFO [decode.py:736] Caught exception:
|
95 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 25.34 GiB already allocated; 1.48 GiB free; 28.92 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
96 |
+
|
97 |
+
2022-04-09 01:54:57,438 INFO [decode.py:743] num_arcs before pruning: 515795
|
98 |
+
2022-04-09 01:54:57,438 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
99 |
+
2022-04-09 01:54:57,447 INFO [decode.py:757] num_arcs after pruning: 10132
|
100 |
+
2022-04-09 01:55:28,356 INFO [decode.py:736] Caught exception:
|
101 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.46 GiB already allocated; 1.48 GiB free; 28.92 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
102 |
+
|
103 |
+
2022-04-09 01:55:28,356 INFO [decode.py:743] num_arcs before pruning: 670748
|
104 |
+
2022-04-09 01:55:28,356 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
105 |
+
2022-04-09 01:55:28,365 INFO [decode.py:757] num_arcs after pruning: 10497
|
106 |
+
2022-04-09 01:55:42,238 INFO [decode_test.py:497] batch 700/?, cuts processed until now is 1956
|
107 |
+
2022-04-09 01:57:57,456 INFO [decode_test.py:497] batch 800/?, cuts processed until now is 2238
|
108 |
+
2022-04-09 01:58:04,281 INFO [decode.py:736] Caught exception:
|
109 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.45 GiB already allocated; 3.07 GiB free; 27.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
110 |
+
|
111 |
+
2022-04-09 01:58:04,282 INFO [decode.py:743] num_arcs before pruning: 175423
|
112 |
+
2022-04-09 01:58:04,282 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
113 |
+
2022-04-09 01:58:04,296 INFO [decode.py:757] num_arcs after pruning: 7926
|
114 |
+
2022-04-09 01:59:07,916 INFO [decode.py:736] Caught exception:
|
115 |
+
CUDA out of memory. Tried to allocate 4.68 GiB (GPU 0; 31.75 GiB total capacity; 24.40 GiB already allocated; 3.06 GiB free; 27.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
116 |
+
|
117 |
+
2022-04-09 01:59:07,917 INFO [decode.py:743] num_arcs before pruning: 259758
|
118 |
+
2022-04-09 01:59:07,917 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
119 |
+
2022-04-09 01:59:07,928 INFO [decode.py:757] num_arcs after pruning: 6026
|
120 |
+
2022-04-09 02:00:00,623 INFO [decode_test.py:497] batch 900/?, cuts processed until now is 2536
|
121 |
+
2022-04-09 02:01:22,959 INFO [decode.py:736] Caught exception:
|
122 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.44 GiB already allocated; 3.08 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
123 |
+
|
124 |
+
2022-04-09 02:01:22,959 INFO [decode.py:743] num_arcs before pruning: 749228
|
125 |
+
2022-04-09 02:01:22,959 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
126 |
+
2022-04-09 02:01:22,968 INFO [decode.py:757] num_arcs after pruning: 23868
|
127 |
+
2022-04-09 02:01:59,449 INFO [decode_test.py:497] batch 1000/?, cuts processed until now is 2824
|
128 |
+
2022-04-09 02:03:05,494 INFO [decode.py:736] Caught exception:
|
129 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.38 GiB already allocated; 3.06 GiB free; 27.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
130 |
+
|
131 |
+
2022-04-09 02:03:05,494 INFO [decode.py:743] num_arcs before pruning: 255135
|
132 |
+
2022-04-09 02:03:05,494 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
133 |
+
2022-04-09 02:03:05,504 INFO [decode.py:757] num_arcs after pruning: 5955
|
134 |
+
2022-04-09 02:03:48,017 INFO [decode.py:736] Caught exception:
|
135 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.61 GiB already allocated; 3.08 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
136 |
+
|
137 |
+
2022-04-09 02:03:48,017 INFO [decode.py:743] num_arcs before pruning: 517077
|
138 |
+
2022-04-09 02:03:48,017 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
139 |
+
2022-04-09 02:03:48,026 INFO [decode.py:757] num_arcs after pruning: 7695
|
140 |
+
2022-04-09 02:04:09,806 INFO [decode_test.py:497] batch 1100/?, cuts processed until now is 3105
|
141 |
+
2022-04-09 02:04:31,410 INFO [decode.py:736] Caught exception:
|
142 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.34 GiB already allocated; 3.08 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
143 |
+
|
144 |
+
2022-04-09 02:04:31,411 INFO [decode.py:743] num_arcs before pruning: 859561
|
145 |
+
2022-04-09 02:04:31,411 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
146 |
+
2022-04-09 02:04:31,422 INFO [decode.py:757] num_arcs after pruning: 13014
|
147 |
+
2022-04-09 02:06:11,496 INFO [decode_test.py:497] batch 1200/?, cuts processed until now is 3401
|
148 |
+
2022-04-09 02:08:10,727 INFO [decode_test.py:497] batch 1300/?, cuts processed until now is 3730
|
149 |
+
2022-04-09 02:10:17,677 INFO [decode_test.py:497] batch 1400/?, cuts processed until now is 4067
|
150 |
+
2022-04-09 02:12:13,175 INFO [decode_test.py:497] batch 1500/?, cuts processed until now is 4329
|
151 |
+
2022-04-09 02:13:02,842 INFO [decode.py:736] Caught exception:
|
152 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.55 GiB already allocated; 3.08 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
153 |
+
|
154 |
+
2022-04-09 02:13:02,843 INFO [decode.py:743] num_arcs before pruning: 475511
|
155 |
+
2022-04-09 02:13:02,843 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
156 |
+
2022-04-09 02:13:02,849 INFO [decode.py:757] num_arcs after pruning: 8439
|
157 |
+
2022-04-09 02:13:46,588 INFO [decode.py:736] Caught exception:
|
158 |
+
CUDA out of memory. Tried to allocate 2.37 GiB (GPU 0; 31.75 GiB total capacity; 26.83 GiB already allocated; 1.45 GiB free; 28.94 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
159 |
+
|
160 |
+
2022-04-09 02:13:46,588 INFO [decode.py:743] num_arcs before pruning: 595488
|
161 |
+
2022-04-09 02:13:46,588 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
162 |
+
2022-04-09 02:13:46,598 INFO [decode.py:757] num_arcs after pruning: 13475
|
163 |
+
2022-04-09 02:14:21,206 INFO [decode_test.py:497] batch 1600/?, cuts processed until now is 4598
|
164 |
+
2022-04-09 02:16:42,740 INFO [decode_test.py:497] batch 1700/?, cuts processed until now is 4969
|
165 |
+
2022-04-09 02:17:13,672 INFO [decode.py:736] Caught exception:
|
166 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 25.39 GiB already allocated; 1.45 GiB free; 28.94 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
167 |
+
|
168 |
+
2022-04-09 02:17:13,673 INFO [decode.py:743] num_arcs before pruning: 615734
|
169 |
+
2022-04-09 02:17:13,673 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
170 |
+
2022-04-09 02:17:13,685 INFO [decode.py:757] num_arcs after pruning: 8684
|
171 |
+
2022-04-09 02:18:54,514 INFO [decode_test.py:497] batch 1800/?, cuts processed until now is 5260
|
172 |
+
2022-04-09 02:18:59,938 INFO [decode.py:736] Caught exception:
|
173 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.36 GiB already allocated; 3.08 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
174 |
+
|
175 |
+
2022-04-09 02:18:59,938 INFO [decode.py:743] num_arcs before pruning: 360099
|
176 |
+
2022-04-09 02:18:59,938 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
177 |
+
2022-04-09 02:18:59,949 INFO [decode.py:757] num_arcs after pruning: 6898
|
178 |
+
2022-04-09 02:19:48,186 INFO [decode.py:736] Caught exception:
|
179 |
+
CUDA out of memory. Tried to allocate 6.00 GiB (GPU 0; 31.75 GiB total capacity; 27.15 GiB already allocated; 967.75 MiB free; 29.45 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
180 |
+
|
181 |
+
2022-04-09 02:19:48,186 INFO [decode.py:743] num_arcs before pruning: 168720
|
182 |
+
2022-04-09 02:19:48,186 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
183 |
+
2022-04-09 02:19:48,201 INFO [decode.py:757] num_arcs after pruning: 5346
|
184 |
+
2022-04-09 02:20:52,049 INFO [decode_test.py:497] batch 1900/?, cuts processed until now is 5585
|
185 |
+
2022-04-09 02:22:12,107 INFO [decode.py:736] Caught exception:
|
186 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.45 GiB already allocated; 973.75 MiB free; 29.44 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
187 |
+
|
188 |
+
2022-04-09 02:22:12,107 INFO [decode.py:743] num_arcs before pruning: 1151735
|
189 |
+
2022-04-09 02:22:12,107 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
190 |
+
2022-04-09 02:22:12,120 INFO [decode.py:757] num_arcs after pruning: 8335
|
191 |
+
2022-04-09 02:23:01,497 INFO [decode_test.py:497] batch 2000/?, cuts processed until now is 5902
|
192 |
+
2022-04-09 02:25:26,356 INFO [decode_test.py:497] batch 2100/?, cuts processed until now is 6219
|
193 |
+
2022-04-09 02:25:56,466 INFO [decode.py:736] Caught exception:
|
194 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.34 GiB already allocated; 973.75 MiB free; 29.44 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
195 |
+
|
196 |
+
2022-04-09 02:25:56,467 INFO [decode.py:743] num_arcs before pruning: 612804
|
197 |
+
2022-04-09 02:25:56,467 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
198 |
+
2022-04-09 02:25:56,477 INFO [decode.py:757] num_arcs after pruning: 10853
|
199 |
+
2022-04-09 02:27:26,441 INFO [decode_test.py:497] batch 2200/?, cuts processed until now is 6480
|
200 |
+
2022-04-09 02:29:28,073 INFO [decode_test.py:497] batch 2300/?, cuts processed until now is 6768
|
201 |
+
2022-04-09 02:31:41,553 INFO [decode_test.py:497] batch 2400/?, cuts processed until now is 7120
|
202 |
+
2022-04-09 02:31:55,632 INFO [decode.py:736] Caught exception:
|
203 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.42 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
204 |
+
|
205 |
+
2022-04-09 02:31:55,632 INFO [decode.py:743] num_arcs before pruning: 411490
|
206 |
+
2022-04-09 02:31:55,632 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
207 |
+
2022-04-09 02:31:55,638 INFO [decode.py:757] num_arcs after pruning: 8626
|
208 |
+
2022-04-09 02:33:22,034 INFO [decode.py:736] Caught exception:
|
209 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.42 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
210 |
+
|
211 |
+
2022-04-09 02:33:22,034 INFO [decode.py:743] num_arcs before pruning: 625728
|
212 |
+
2022-04-09 02:33:22,035 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
213 |
+
2022-04-09 02:33:22,043 INFO [decode.py:757] num_arcs after pruning: 9502
|
214 |
+
2022-04-09 02:33:37,663 INFO [decode_test.py:497] batch 2500/?, cuts processed until now is 7387
|
215 |
+
2022-04-09 02:34:18,300 INFO [decode.py:736] Caught exception:
|
216 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.51 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
217 |
+
|
218 |
+
2022-04-09 02:34:18,301 INFO [decode.py:743] num_arcs before pruning: 1015956
|
219 |
+
2022-04-09 02:34:18,301 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
220 |
+
2022-04-09 02:34:18,314 INFO [decode.py:757] num_arcs after pruning: 14404
|
221 |
+
2022-04-09 02:34:20,220 INFO [decode.py:841] Caught exception:
|
222 |
+
CUDA out of memory. Tried to allocate 5.58 GiB (GPU 0; 31.75 GiB total capacity; 24.87 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
223 |
+
|
224 |
+
2022-04-09 02:34:20,221 INFO [decode.py:843] num_paths before decreasing: 1000
|
225 |
+
2022-04-09 02:34:20,221 INFO [decode.py:852] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
226 |
+
2022-04-09 02:34:20,221 INFO [decode.py:858] num_paths after decreasing: 500
|
227 |
+
2022-04-09 02:34:40,089 INFO [decode.py:736] Caught exception:
|
228 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.38 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
229 |
+
|
230 |
+
2022-04-09 02:34:40,089 INFO [decode.py:743] num_arcs before pruning: 570686
|
231 |
+
2022-04-09 02:34:40,089 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
232 |
+
2022-04-09 02:34:40,098 INFO [decode.py:757] num_arcs after pruning: 9182
|
233 |
+
2022-04-09 02:35:50,624 INFO [decode_test.py:497] batch 2600/?, cuts processed until now is 7764
|
234 |
+
2022-04-09 02:36:44,519 INFO [decode.py:736] Caught exception:
|
235 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.61 GiB already allocated; 3.08 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
236 |
+
|
237 |
+
2022-04-09 02:36:44,519 INFO [decode.py:743] num_arcs before pruning: 1066267
|
238 |
+
2022-04-09 02:36:44,519 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
239 |
+
2022-04-09 02:36:44,530 INFO [decode.py:757] num_arcs after pruning: 6963
|
240 |
+
2022-04-09 02:38:18,717 INFO [decode_test.py:497] batch 2700/?, cuts processed until now is 8078
|
241 |
+
2022-04-09 02:40:07,021 INFO [decode.py:736] Caught exception:
|
242 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.42 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
243 |
+
|
244 |
+
2022-04-09 02:40:07,022 INFO [decode.py:743] num_arcs before pruning: 1023667
|
245 |
+
2022-04-09 02:40:07,022 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
246 |
+
2022-04-09 02:40:07,034 INFO [decode.py:757] num_arcs after pruning: 13090
|
247 |
+
2022-04-09 02:40:25,184 INFO [decode_test.py:497] batch 2800/?, cuts processed until now is 8444
|
248 |
+
2022-04-09 02:41:27,080 INFO [decode.py:736] Caught exception:
|
249 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.32 GiB already allocated; 3.08 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
250 |
+
|
251 |
+
2022-04-09 02:41:27,080 INFO [decode.py:743] num_arcs before pruning: 739744
|
252 |
+
2022-04-09 02:41:27,080 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
253 |
+
2022-04-09 02:41:27,093 INFO [decode.py:757] num_arcs after pruning: 9791
|
254 |
+
2022-04-09 02:42:44,319 INFO [decode_test.py:497] batch 2900/?, cuts processed until now is 8765
|
255 |
+
2022-04-09 02:42:44,656 INFO [decode.py:736] Caught exception:
|
256 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.73 GiB already allocated; 3.08 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
257 |
+
|
258 |
+
2022-04-09 02:42:44,656 INFO [decode.py:743] num_arcs before pruning: 666168
|
259 |
+
2022-04-09 02:42:44,656 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
260 |
+
2022-04-09 02:42:44,665 INFO [decode.py:757] num_arcs after pruning: 17223
|
261 |
+
2022-04-09 02:43:05,748 INFO [decode.py:736] Caught exception:
|
262 |
+
CUDA out of memory. Tried to allocate 5.60 GiB (GPU 0; 31.75 GiB total capacity; 26.18 GiB already allocated; 1.14 GiB free; 29.26 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
263 |
+
|
264 |
+
2022-04-09 02:43:05,748 INFO [decode.py:743] num_arcs before pruning: 188729
|
265 |
+
2022-04-09 02:43:05,748 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
266 |
+
2022-04-09 02:43:05,762 INFO [decode.py:757] num_arcs after pruning: 8688
|
267 |
+
2022-04-09 02:44:54,469 INFO [decode_test.py:497] batch 3000/?, cuts processed until now is 9050
|
268 |
+
2022-04-09 02:46:55,167 INFO [decode_test.py:497] batch 3100/?, cuts processed until now is 9296
|
269 |
+
2022-04-09 02:47:28,418 INFO [decode.py:736] Caught exception:
|
270 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 20.00 GiB already allocated; 3.07 GiB free; 27.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
271 |
+
|
272 |
+
2022-04-09 02:47:28,419 INFO [decode.py:743] num_arcs before pruning: 160153
|
273 |
+
2022-04-09 02:47:28,419 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
274 |
+
2022-04-09 02:47:28,448 INFO [decode.py:757] num_arcs after pruning: 7778
|
275 |
+
2022-04-09 02:49:21,448 INFO [decode_test.py:497] batch 3200/?, cuts processed until now is 9652
|
276 |
+
2022-04-09 02:50:17,558 INFO [decode.py:736] Caught exception:
|
277 |
+
CUDA out of memory. Tried to allocate 6.13 GiB (GPU 0; 31.75 GiB total capacity; 27.60 GiB already allocated; 895.75 MiB free; 29.52 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
278 |
+
|
279 |
+
2022-04-09 02:50:17,558 INFO [decode.py:743] num_arcs before pruning: 388116
|
280 |
+
2022-04-09 02:50:17,559 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
281 |
+
2022-04-09 02:50:17,565 INFO [decode.py:757] num_arcs after pruning: 10555
|
282 |
+
2022-04-09 02:51:30,675 INFO [decode_test.py:497] batch 3300/?, cuts processed until now is 10071
|
283 |
+
2022-04-09 02:53:49,565 INFO [decode_test.py:497] batch 3400/?, cuts processed until now is 10342
|
284 |
+
2022-04-09 02:55:49,392 INFO [decode_test.py:497] batch 3500/?, cuts processed until now is 10642
|
285 |
+
2022-04-09 02:58:07,518 INFO [decode_test.py:497] batch 3600/?, cuts processed until now is 10951
|
286 |
+
2022-04-09 02:58:16,360 INFO [decode.py:736] Caught exception:
|
287 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.29 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
288 |
+
|
289 |
+
2022-04-09 02:58:16,361 INFO [decode.py:743] num_arcs before pruning: 396714
|
290 |
+
2022-04-09 02:58:16,361 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
291 |
+
2022-04-09 02:58:16,374 INFO [decode.py:757] num_arcs after pruning: 9543
|
292 |
+
2022-04-09 03:00:00,485 INFO [decode_test.py:497] batch 3700/?, cuts processed until now is 11231
|
293 |
+
2022-04-09 03:00:17,600 INFO [decode.py:736] Caught exception:
|
294 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.45 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
295 |
+
|
296 |
+
2022-04-09 03:00:17,601 INFO [decode.py:743] num_arcs before pruning: 854366
|
297 |
+
2022-04-09 03:00:17,601 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
298 |
+
2022-04-09 03:00:17,612 INFO [decode.py:757] num_arcs after pruning: 10487
|
299 |
+
2022-04-09 03:00:20,098 INFO [decode.py:736] Caught exception:
|
300 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.68 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
301 |
+
|
302 |
+
2022-04-09 03:00:20,098 INFO [decode.py:743] num_arcs before pruning: 442824
|
303 |
+
2022-04-09 03:00:20,098 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
304 |
+
2022-04-09 03:00:20,108 INFO [decode.py:757] num_arcs after pruning: 5265
|
305 |
+
2022-04-09 03:02:00,114 INFO [decode_test.py:497] batch 3800/?, cuts processed until now is 11509
|
306 |
+
2022-04-09 03:02:11,570 INFO [decode.py:736] Caught exception:
|
307 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.19 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
308 |
+
|
309 |
+
2022-04-09 03:02:11,571 INFO [decode.py:743] num_arcs before pruning: 285638
|
310 |
+
2022-04-09 03:02:11,571 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
311 |
+
2022-04-09 03:02:11,579 INFO [decode.py:757] num_arcs after pruning: 5903
|
312 |
+
2022-04-09 03:04:02,757 INFO [decode_test.py:497] batch 3900/?, cuts processed until now is 11774
|
313 |
+
2022-04-09 03:05:19,989 INFO [decode.py:736] Caught exception:
|
314 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.73 GiB already allocated; 3.08 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
315 |
+
|
316 |
+
2022-04-09 03:05:19,990 INFO [decode.py:743] num_arcs before pruning: 637327
|
317 |
+
2022-04-09 03:05:19,990 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
318 |
+
2022-04-09 03:05:19,999 INFO [decode.py:757] num_arcs after pruning: 6357
|
319 |
+
2022-04-09 03:06:01,953 INFO [decode_test.py:497] batch 4000/?, cuts processed until now is 12045
|
320 |
+
2022-04-09 03:07:49,854 INFO [decode_test.py:497] batch 4100/?, cuts processed until now is 12300
|
321 |
+
2022-04-09 03:09:15,137 INFO [decode.py:736] Caught exception:
|
322 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.45 GiB already allocated; 3.08 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
323 |
+
|
324 |
+
2022-04-09 03:09:15,138 INFO [decode.py:743] num_arcs before pruning: 507733
|
325 |
+
2022-04-09 03:09:15,138 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
326 |
+
2022-04-09 03:09:15,148 INFO [decode.py:757] num_arcs after pruning: 4196
|
327 |
+
2022-04-09 03:09:47,397 INFO [decode.py:736] Caught exception:
|
328 |
+
CUDA out of memory. Tried to allocate 5.86 GiB (GPU 0; 31.75 GiB total capacity; 27.78 GiB already allocated; 925.75 MiB free; 29.49 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
329 |
+
|
330 |
+
2022-04-09 03:09:47,397 INFO [decode.py:743] num_arcs before pruning: 514118
|
331 |
+
2022-04-09 03:09:47,397 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
332 |
+
2022-04-09 03:09:47,407 INFO [decode.py:757] num_arcs after pruning: 7168
|
333 |
+
2022-04-09 03:10:00,013 INFO [decode_test.py:497] batch 4200/?, cuts processed until now is 12580
|
334 |
+
2022-04-09 03:10:33,411 INFO [decode.py:736] Caught exception:
|
335 |
+
CUDA out of memory. Tried to allocate 2.80 GiB (GPU 0; 31.75 GiB total capacity; 27.70 GiB already allocated; 925.75 MiB free; 29.49 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
336 |
+
|
337 |
+
2022-04-09 03:10:33,411 INFO [decode.py:743] num_arcs before pruning: 374935
|
338 |
+
2022-04-09 03:10:33,411 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
339 |
+
2022-04-09 03:10:33,418 INFO [decode.py:757] num_arcs after pruning: 10023
|
340 |
+
2022-04-09 03:12:04,333 INFO [decode_test.py:497] batch 4300/?, cuts processed until now is 12807
|
341 |
+
2022-04-09 03:14:06,889 INFO [decode_test.py:497] batch 4400/?, cuts processed until now is 13050
|
342 |
+
2022-04-09 03:14:34,787 INFO [decode.py:736] Caught exception:
|
343 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.47 GiB already allocated; 925.75 MiB free; 29.49 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
344 |
+
|
345 |
+
2022-04-09 03:14:34,788 INFO [decode.py:743] num_arcs before pruning: 767465
|
346 |
+
2022-04-09 03:14:34,788 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
347 |
+
2022-04-09 03:14:34,797 INFO [decode.py:757] num_arcs after pruning: 19151
|
348 |
+
2022-04-09 03:15:08,864 INFO [decode.py:736] Caught exception:
|
349 |
+
|
350 |
+
Some bad things happened. Please read the above error messages and stack
|
351 |
+
trace. If you are using Python, the following command may be helpful:
|
352 |
+
|
353 |
+
gdb --args python /path/to/your/code.py
|
354 |
+
|
355 |
+
(You can use `gdb` to debug the code. Please consider compiling
|
356 |
+
a debug version of k2.).
|
357 |
+
|
358 |
+
If you are unable to fix it, please open an issue at:
|
359 |
+
|
360 |
+
https://github.com/k2-fsa/k2/issues/new
|
361 |
+
|
362 |
+
|
363 |
+
2022-04-09 03:15:08,864 INFO [decode.py:743] num_arcs before pruning: 123833
|
364 |
+
2022-04-09 03:15:08,864 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
365 |
+
2022-04-09 03:15:08,913 INFO [decode.py:757] num_arcs after pruning: 4150
|
366 |
+
2022-04-09 03:15:34,899 INFO [decode.py:736] Caught exception:
|
367 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 25.64 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
368 |
+
|
369 |
+
2022-04-09 03:15:34,899 INFO [decode.py:743] num_arcs before pruning: 444800
|
370 |
+
2022-04-09 03:15:34,899 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
371 |
+
2022-04-09 03:15:34,908 INFO [decode.py:757] num_arcs after pruning: 11839
|
372 |
+
2022-04-09 03:16:08,462 INFO [decode_test.py:497] batch 4500/?, cuts processed until now is 13295
|
373 |
+
2022-04-09 03:17:56,946 INFO [decode_test.py:497] batch 4600/?, cuts processed until now is 13593
|
374 |
+
2022-04-09 03:18:16,099 INFO [decode.py:736] Caught exception:
|
375 |
+
CUDA out of memory. Tried to allocate 5.53 GiB (GPU 0; 31.75 GiB total capacity; 26.53 GiB already allocated; 1.12 GiB free; 29.28 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
376 |
+
|
377 |
+
2022-04-09 03:18:16,099 INFO [decode.py:743] num_arcs before pruning: 350609
|
378 |
+
2022-04-09 03:18:16,100 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
379 |
+
2022-04-09 03:18:16,105 INFO [decode.py:757] num_arcs after pruning: 9262
|
380 |
+
2022-04-09 03:19:57,230 INFO [decode_test.py:497] batch 4700/?, cuts processed until now is 13858
|
381 |
+
2022-04-09 03:20:19,775 INFO [decode.py:736] Caught exception:
|
382 |
+
CUDA out of memory. Tried to allocate 4.87 GiB (GPU 0; 31.75 GiB total capacity; 25.78 GiB already allocated; 1.12 GiB free; 29.28 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
383 |
+
|
384 |
+
2022-04-09 03:20:19,775 INFO [decode.py:743] num_arcs before pruning: 375071
|
385 |
+
2022-04-09 03:20:19,775 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
386 |
+
2022-04-09 03:20:19,785 INFO [decode.py:757] num_arcs after pruning: 6365
|
387 |
+
2022-04-09 03:21:29,481 INFO [decode.py:736] Caught exception:
|
388 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.42 GiB already allocated; 1.12 GiB free; 29.27 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
389 |
+
|
390 |
+
2022-04-09 03:21:29,481 INFO [decode.py:743] num_arcs before pruning: 872088
|
391 |
+
2022-04-09 03:21:29,481 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
392 |
+
2022-04-09 03:21:29,492 INFO [decode.py:757] num_arcs after pruning: 10043
|
393 |
+
2022-04-09 03:22:01,760 INFO [decode_test.py:497] batch 4800/?, cuts processed until now is 14079
|
394 |
+
2022-04-09 03:24:10,370 INFO [decode_test.py:497] batch 4900/?, cuts processed until now is 14298
|
395 |
+
2022-04-09 03:26:10,811 INFO [decode_test.py:497] batch 5000/?, cuts processed until now is 14515
|
396 |
+
2022-04-09 03:27:46,191 INFO [decode.py:736] Caught exception:
|
397 |
+
|
398 |
+
Some bad things happened. Please read the above error messages and stack
|
399 |
+
trace. If you are using Python, the following command may be helpful:
|
400 |
+
|
401 |
+
gdb --args python /path/to/your/code.py
|
402 |
+
|
403 |
+
(You can use `gdb` to debug the code. Please consider compiling
|
404 |
+
a debug version of k2.).
|
405 |
+
|
406 |
+
If you are unable to fix it, please open an issue at:
|
407 |
+
|
408 |
+
https://github.com/k2-fsa/k2/issues/new
|
409 |
+
|
410 |
+
|
411 |
+
2022-04-09 03:27:46,192 INFO [decode.py:743] num_arcs before pruning: 246382
|
412 |
+
2022-04-09 03:27:46,192 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
413 |
+
2022-04-09 03:27:46,253 INFO [decode.py:757] num_arcs after pruning: 6775
|
414 |
+
2022-04-09 03:28:15,199 INFO [decode_test.py:497] batch 5100/?, cuts processed until now is 14718
|
415 |
+
2022-04-09 03:29:19,807 INFO [decode.py:736] Caught exception:
|
416 |
+
CUDA out of memory. Tried to allocate 6.15 GiB (GPU 0; 31.75 GiB total capacity; 26.67 GiB already allocated; 1.11 GiB free; 29.29 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
417 |
+
|
418 |
+
2022-04-09 03:29:19,808 INFO [decode.py:743] num_arcs before pruning: 220820
|
419 |
+
2022-04-09 03:29:19,808 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
420 |
+
2022-04-09 03:29:19,815 INFO [decode.py:757] num_arcs after pruning: 13482
|
421 |
+
2022-04-09 03:30:16,045 INFO [decode_test.py:497] batch 5200/?, cuts processed until now is 14930
|
422 |
+
2022-04-09 03:32:12,235 INFO [decode_test.py:497] batch 5300/?, cuts processed until now is 15128
|
423 |
+
2022-04-09 03:33:06,358 INFO [decode.py:736] Caught exception:
|
424 |
+
|
425 |
+
Some bad things happened. Please read the above error messages and stack
|
426 |
+
trace. If you are using Python, the following command may be helpful:
|
427 |
+
|
428 |
+
gdb --args python /path/to/your/code.py
|
429 |
+
|
430 |
+
(You can use `gdb` to debug the code. Please consider compiling
|
431 |
+
a debug version of k2.).
|
432 |
+
|
433 |
+
If you are unable to fix it, please open an issue at:
|
434 |
+
|
435 |
+
https://github.com/k2-fsa/k2/issues/new
|
436 |
+
|
437 |
+
|
438 |
+
2022-04-09 03:33:06,359 INFO [decode.py:743] num_arcs before pruning: 190203
|
439 |
+
2022-04-09 03:33:06,359 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
440 |
+
2022-04-09 03:33:06,413 INFO [decode.py:757] num_arcs after pruning: 6202
|
441 |
+
2022-04-09 03:34:14,862 INFO [decode_test.py:497] batch 5400/?, cuts processed until now is 15327
|
442 |
+
2022-04-09 03:36:18,973 INFO [decode_test.py:497] batch 5500/?, cuts processed until now is 15531
|
443 |
+
2022-04-09 03:38:18,633 INFO [decode_test.py:497] batch 5600/?, cuts processed until now is 15724
|
444 |
+
2022-04-09 03:38:48,490 INFO [decode.py:736] Caught exception:
|
445 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.52 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
446 |
+
|
447 |
+
2022-04-09 03:38:48,491 INFO [decode.py:743] num_arcs before pruning: 554330
|
448 |
+
2022-04-09 03:38:48,491 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
449 |
+
2022-04-09 03:38:48,500 INFO [decode.py:757] num_arcs after pruning: 10730
|
450 |
+
2022-04-09 03:39:51,281 INFO [decode.py:736] Caught exception:
|
451 |
+
CUDA out of memory. Tried to allocate 4.83 GiB (GPU 0; 31.75 GiB total capacity; 25.96 GiB already allocated; 1.31 GiB free; 29.08 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
452 |
+
|
453 |
+
2022-04-09 03:39:51,281 INFO [decode.py:743] num_arcs before pruning: 160031
|
454 |
+
2022-04-09 03:39:51,281 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
455 |
+
2022-04-09 03:39:51,288 INFO [decode.py:757] num_arcs after pruning: 4270
|
456 |
+
2022-04-09 03:40:28,016 INFO [decode_test.py:497] batch 5700/?, cuts processed until now is 15908
|
457 |
+
2022-04-09 03:40:46,608 INFO [decode.py:736] Caught exception:
|
458 |
+
CUDA out of memory. Tried to allocate 2.58 GiB (GPU 0; 31.75 GiB total capacity; 27.28 GiB already allocated; 1.32 GiB free; 29.07 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
459 |
+
|
460 |
+
2022-04-09 03:40:46,608 INFO [decode.py:743] num_arcs before pruning: 406026
|
461 |
+
2022-04-09 03:40:46,608 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
462 |
+
2022-04-09 03:40:46,616 INFO [decode.py:757] num_arcs after pruning: 11179
|
463 |
+
2022-04-09 03:42:16,464 INFO [decode.py:736] Caught exception:
|
464 |
+
CUDA out of memory. Tried to allocate 2.29 GiB (GPU 0; 31.75 GiB total capacity; 26.71 GiB already allocated; 1.32 GiB free; 29.07 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
465 |
+
|
466 |
+
2022-04-09 03:42:16,464 INFO [decode.py:743] num_arcs before pruning: 639824
|
467 |
+
2022-04-09 03:42:16,464 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
468 |
+
2022-04-09 03:42:16,476 INFO [decode.py:757] num_arcs after pruning: 5520
|
469 |
+
2022-04-09 03:42:52,683 INFO [decode_test.py:497] batch 5800/?, cuts processed until now is 16094
|
470 |
+
2022-04-09 03:44:51,754 INFO [decode_test.py:497] batch 5900/?, cuts processed until now is 16289
|
471 |
+
2022-04-09 03:46:52,121 INFO [decode_test.py:497] batch 6000/?, cuts processed until now is 16488
|
472 |
+
2022-04-09 03:48:54,739 INFO [decode_test.py:497] batch 6100/?, cuts processed until now is 16661
|
473 |
+
2022-04-09 03:49:24,829 INFO [decode.py:736] Caught exception:
|
474 |
+
CUDA out of memory. Tried to allocate 1.84 GiB (GPU 0; 31.75 GiB total capacity; 28.87 GiB already allocated; 409.75 MiB free; 29.99 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
475 |
+
|
476 |
+
2022-04-09 03:49:24,830 INFO [decode.py:743] num_arcs before pruning: 443401
|
477 |
+
2022-04-09 03:49:24,830 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
478 |
+
2022-04-09 03:49:24,837 INFO [decode.py:757] num_arcs after pruning: 5211
|
479 |
+
2022-04-09 03:50:27,492 INFO [decode.py:736] Caught exception:
|
480 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.35 GiB already allocated; 2.15 GiB free; 28.24 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
481 |
+
|
482 |
+
2022-04-09 03:50:27,493 INFO [decode.py:743] num_arcs before pruning: 361598
|
483 |
+
2022-04-09 03:50:27,493 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
484 |
+
2022-04-09 03:50:27,507 INFO [decode.py:757] num_arcs after pruning: 8660
|
485 |
+
2022-04-09 03:51:02,856 INFO [decode_test.py:497] batch 6200/?, cuts processed until now is 16828
|
486 |
+
2022-04-09 03:53:03,912 INFO [decode_test.py:497] batch 6300/?, cuts processed until now is 17002
|
487 |
+
2022-04-09 03:55:04,964 INFO [decode_test.py:497] batch 6400/?, cuts processed until now is 17181
|
488 |
+
2022-04-09 03:55:08,345 INFO [decode.py:736] Caught exception:
|
489 |
+
CUDA out of memory. Tried to allocate 4.89 GiB (GPU 0; 31.75 GiB total capacity; 26.28 GiB already allocated; 2.16 GiB free; 28.24 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
490 |
+
|
491 |
+
2022-04-09 03:55:08,345 INFO [decode.py:743] num_arcs before pruning: 867262
|
492 |
+
2022-04-09 03:55:08,345 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
493 |
+
2022-04-09 03:55:08,356 INFO [decode.py:757] num_arcs after pruning: 6494
|
494 |
+
2022-04-09 03:56:03,884 INFO [decode.py:736] Caught exception:
|
495 |
+
CUDA out of memory. Tried to allocate 1.90 GiB (GPU 0; 31.75 GiB total capacity; 28.97 GiB already allocated; 1.16 GiB free; 29.23 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
496 |
+
|
497 |
+
2022-04-09 03:56:03,885 INFO [decode.py:743] num_arcs before pruning: 233755
|
498 |
+
2022-04-09 03:56:03,885 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
499 |
+
2022-04-09 03:56:03,910 INFO [decode.py:757] num_arcs after pruning: 5823
|
500 |
+
2022-04-09 03:57:08,774 INFO [decode_test.py:497] batch 6500/?, cuts processed until now is 17347
|
501 |
+
2022-04-09 03:59:01,245 INFO [decode_test.py:497] batch 6600/?, cuts processed until now is 17502
|
502 |
+
2022-04-09 03:59:13,147 INFO [decode.py:736] Caught exception:
|
503 |
+
CUDA out of memory. Tried to allocate 5.80 GiB (GPU 0; 31.75 GiB total capacity; 26.73 GiB already allocated; 1.17 GiB free; 29.22 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
504 |
+
|
505 |
+
2022-04-09 03:59:13,147 INFO [decode.py:743] num_arcs before pruning: 174004
|
506 |
+
2022-04-09 03:59:13,147 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
507 |
+
2022-04-09 03:59:13,155 INFO [decode.py:757] num_arcs after pruning: 6857
|
508 |
+
2022-04-09 04:00:59,687 INFO [decode_test.py:497] batch 6700/?, cuts processed until now is 17661
|
509 |
+
2022-04-09 04:03:01,660 INFO [decode_test.py:497] batch 6800/?, cuts processed until now is 17823
|
510 |
+
2022-04-09 04:04:55,219 INFO [decode_test.py:497] batch 6900/?, cuts processed until now is 17997
|
511 |
+
2022-04-09 04:07:05,841 INFO [decode_test.py:497] batch 7000/?, cuts processed until now is 18159
|
512 |
+
2022-04-09 04:09:04,994 INFO [decode_test.py:497] batch 7100/?, cuts processed until now is 18299
|
513 |
+
2022-04-09 04:11:07,439 INFO [decode_test.py:497] batch 7200/?, cuts processed until now is 18432
|
514 |
+
2022-04-09 04:13:18,126 INFO [decode_test.py:497] batch 7300/?, cuts processed until now is 18552
|
515 |
+
2022-04-09 04:15:23,102 INFO [decode_test.py:497] batch 7400/?, cuts processed until now is 18656
|
516 |
+
2022-04-09 04:17:49,550 INFO [decode_test.py:497] batch 7500/?, cuts processed until now is 18798
|
517 |
+
2022-04-09 04:19:16,128 INFO [decode.py:736] Caught exception:
|
518 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.34 GiB already allocated; 2.12 GiB free; 28.27 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
519 |
+
|
520 |
+
2022-04-09 04:19:16,129 INFO [decode.py:743] num_arcs before pruning: 1155990
|
521 |
+
2022-04-09 04:19:16,129 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
522 |
+
2022-04-09 04:19:16,143 INFO [decode.py:757] num_arcs after pruning: 9141
|
523 |
+
2022-04-09 04:20:19,961 INFO [decode_test.py:497] batch 7600/?, cuts processed until now is 18945
|
524 |
+
2022-04-09 04:22:44,642 INFO [decode_test.py:497] batch 7700/?, cuts processed until now is 19084
|
525 |
+
2022-04-09 04:23:18,184 INFO [decode.py:841] Caught exception:
|
526 |
+
CUDA out of memory. Tried to allocate 1.26 GiB (GPU 0; 31.75 GiB total capacity; 27.36 GiB already allocated; 881.75 MiB free; 29.53 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
527 |
+
|
528 |
+
2022-04-09 04:23:18,184 INFO [decode.py:843] num_paths before decreasing: 1000
|
529 |
+
2022-04-09 04:23:18,184 INFO [decode.py:852] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
530 |
+
2022-04-09 04:23:18,184 INFO [decode.py:858] num_paths after decreasing: 500
|
531 |
+
2022-04-09 04:24:52,959 INFO [decode.py:736] Caught exception:
|
532 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.53 GiB already allocated; 2.12 GiB free; 28.27 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
533 |
+
|
534 |
+
2022-04-09 04:24:52,960 INFO [decode.py:743] num_arcs before pruning: 624026
|
535 |
+
2022-04-09 04:24:52,960 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
536 |
+
2022-04-09 04:24:52,972 INFO [decode.py:757] num_arcs after pruning: 10008
|
537 |
+
2022-04-09 04:25:07,718 INFO [decode_test.py:497] batch 7800/?, cuts processed until now is 19232
|
538 |
+
2022-04-09 04:25:31,876 INFO [decode.py:736] Caught exception:
|
539 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.51 GiB already allocated; 2.12 GiB free; 28.27 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
540 |
+
|
541 |
+
2022-04-09 04:25:31,876 INFO [decode.py:743] num_arcs before pruning: 688909
|
542 |
+
2022-04-09 04:25:31,877 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
543 |
+
2022-04-09 04:25:31,887 INFO [decode.py:757] num_arcs after pruning: 8886
|
544 |
+
2022-04-09 04:25:57,970 INFO [decode.py:736] Caught exception:
|
545 |
+
CUDA out of memory. Tried to allocate 5.04 GiB (GPU 0; 31.75 GiB total capacity; 25.95 GiB already allocated; 2.12 GiB free; 28.27 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
546 |
+
|
547 |
+
2022-04-09 04:25:57,971 INFO [decode.py:743] num_arcs before pruning: 891176
|
548 |
+
2022-04-09 04:25:57,971 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
549 |
+
2022-04-09 04:25:57,982 INFO [decode.py:757] num_arcs after pruning: 10106
|
550 |
+
2022-04-09 04:26:19,609 INFO [decode.py:736] Caught exception:
|
551 |
+
CUDA out of memory. Tried to allocate 2.63 GiB (GPU 0; 31.75 GiB total capacity; 27.60 GiB already allocated; 327.75 MiB free; 30.07 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
552 |
+
|
553 |
+
2022-04-09 04:26:19,609 INFO [decode.py:743] num_arcs before pruning: 415376
|
554 |
+
2022-04-09 04:26:19,609 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
555 |
+
2022-04-09 04:26:19,620 INFO [decode.py:757] num_arcs after pruning: 7771
|
556 |
+
2022-04-09 04:27:33,059 INFO [decode_test.py:497] batch 7900/?, cuts processed until now is 19375
|
557 |
+
2022-04-09 04:29:43,649 INFO [decode_test.py:497] batch 8000/?, cuts processed until now is 19510
|
558 |
+
2022-04-09 04:30:20,590 INFO [decode.py:736] Caught exception:
|
559 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.65 GiB already allocated; 2.12 GiB free; 28.27 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
560 |
+
|
561 |
+
2022-04-09 04:30:20,591 INFO [decode.py:743] num_arcs before pruning: 330767
|
562 |
+
2022-04-09 04:30:20,591 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
563 |
+
2022-04-09 04:30:20,606 INFO [decode.py:757] num_arcs after pruning: 5820
|
564 |
+
2022-04-09 04:31:55,818 INFO [decode_test.py:497] batch 8100/?, cuts processed until now is 19643
|
565 |
+
2022-04-09 04:34:11,720 INFO [decode_test.py:497] batch 8200/?, cuts processed until now is 19776
|
566 |
+
2022-04-09 04:35:04,147 INFO [decode.py:736] Caught exception:
|
567 |
+
CUDA out of memory. Tried to allocate 4.49 GiB (GPU 0; 31.75 GiB total capacity; 24.38 GiB already allocated; 2.12 GiB free; 28.27 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
568 |
+
|
569 |
+
2022-04-09 04:35:04,147 INFO [decode.py:743] num_arcs before pruning: 533967
|
570 |
+
2022-04-09 04:35:04,147 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
571 |
+
2022-04-09 04:35:04,157 INFO [decode.py:757] num_arcs after pruning: 3449
|
572 |
+
2022-04-09 04:36:15,595 INFO [decode.py:736] Caught exception:
|
573 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.67 GiB already allocated; 2.12 GiB free; 28.27 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
574 |
+
|
575 |
+
2022-04-09 04:36:15,595 INFO [decode.py:743] num_arcs before pruning: 397138
|
576 |
+
2022-04-09 04:36:15,596 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
577 |
+
2022-04-09 04:36:15,605 INFO [decode.py:757] num_arcs after pruning: 6775
|
578 |
+
2022-04-09 04:36:31,844 INFO [decode_test.py:497] batch 8300/?, cuts processed until now is 19882
|
579 |
+
2022-04-09 04:37:04,130 INFO [decode.py:736] Caught exception:
|
580 |
+
|
581 |
+
Some bad things happened. Please read the above error messages and stack
|
582 |
+
trace. If you are using Python, the following command may be helpful:
|
583 |
+
|
584 |
+
gdb --args python /path/to/your/code.py
|
585 |
+
|
586 |
+
(You can use `gdb` to debug the code. Please consider compiling
|
587 |
+
a debug version of k2.).
|
588 |
+
|
589 |
+
If you are unable to fix it, please open an issue at:
|
590 |
+
|
591 |
+
https://github.com/k2-fsa/k2/issues/new
|
592 |
+
|
593 |
+
|
594 |
+
2022-04-09 04:37:04,130 INFO [decode.py:743] num_arcs before pruning: 456591
|
595 |
+
2022-04-09 04:37:04,130 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
596 |
+
2022-04-09 04:37:04,180 INFO [decode.py:757] num_arcs after pruning: 5275
|
597 |
+
2022-04-09 04:57:33,432 INFO [decode_test.py:567]
|
598 |
+
For test, WER of different settings are:
|
599 |
+
ngram_lm_scale_0.3_attention_scale_0.7 10.58 best for test
|
600 |
+
ngram_lm_scale_0.5_attention_scale_1.3 10.58
|
601 |
+
ngram_lm_scale_0.3_attention_scale_0.5 10.59
|
602 |
+
ngram_lm_scale_0.3_attention_scale_0.6 10.59
|
603 |
+
ngram_lm_scale_0.3_attention_scale_0.9 10.59
|
604 |
+
ngram_lm_scale_0.3_attention_scale_1.0 10.59
|
605 |
+
ngram_lm_scale_0.3_attention_scale_1.1 10.59
|
606 |
+
ngram_lm_scale_0.3_attention_scale_1.2 10.59
|
607 |
+
ngram_lm_scale_0.3_attention_scale_1.3 10.59
|
608 |
+
ngram_lm_scale_0.5_attention_scale_1.0 10.59
|
609 |
+
ngram_lm_scale_0.5_attention_scale_1.1 10.59
|
610 |
+
ngram_lm_scale_0.5_attention_scale_1.2 10.59
|
611 |
+
ngram_lm_scale_0.5_attention_scale_1.5 10.59
|
612 |
+
ngram_lm_scale_0.5_attention_scale_1.7 10.59
|
613 |
+
ngram_lm_scale_0.5_attention_scale_1.9 10.59
|
614 |
+
ngram_lm_scale_0.5_attention_scale_2.0 10.59
|
615 |
+
ngram_lm_scale_0.5_attention_scale_2.1 10.59
|
616 |
+
ngram_lm_scale_0.5_attention_scale_2.2 10.59
|
617 |
+
ngram_lm_scale_0.5_attention_scale_2.3 10.59
|
618 |
+
ngram_lm_scale_0.6_attention_scale_1.9 10.59
|
619 |
+
ngram_lm_scale_0.6_attention_scale_2.0 10.59
|
620 |
+
ngram_lm_scale_0.6_attention_scale_2.1 10.59
|
621 |
+
ngram_lm_scale_0.6_attention_scale_2.2 10.59
|
622 |
+
ngram_lm_scale_0.6_attention_scale_2.3 10.59
|
623 |
+
ngram_lm_scale_0.6_attention_scale_2.5 10.59
|
624 |
+
ngram_lm_scale_0.3_attention_scale_1.5 10.6
|
625 |
+
ngram_lm_scale_0.3_attention_scale_1.7 10.6
|
626 |
+
ngram_lm_scale_0.3_attention_scale_1.9 10.6
|
627 |
+
ngram_lm_scale_0.3_attention_scale_2.0 10.6
|
628 |
+
ngram_lm_scale_0.3_attention_scale_2.1 10.6
|
629 |
+
ngram_lm_scale_0.3_attention_scale_2.2 10.6
|
630 |
+
ngram_lm_scale_0.3_attention_scale_2.3 10.6
|
631 |
+
ngram_lm_scale_0.3_attention_scale_2.5 10.6
|
632 |
+
ngram_lm_scale_0.5_attention_scale_0.9 10.6
|
633 |
+
ngram_lm_scale_0.5_attention_scale_2.5 10.6
|
634 |
+
ngram_lm_scale_0.5_attention_scale_3.0 10.6
|
635 |
+
ngram_lm_scale_0.6_attention_scale_1.3 10.6
|
636 |
+
ngram_lm_scale_0.6_attention_scale_1.5 10.6
|
637 |
+
ngram_lm_scale_0.6_attention_scale_1.7 10.6
|
638 |
+
ngram_lm_scale_0.6_attention_scale_3.0 10.6
|
639 |
+
ngram_lm_scale_0.3_attention_scale_0.3 10.61
|
640 |
+
ngram_lm_scale_0.3_attention_scale_3.0 10.61
|
641 |
+
ngram_lm_scale_0.5_attention_scale_4.0 10.61
|
642 |
+
ngram_lm_scale_0.5_attention_scale_5.0 10.61
|
643 |
+
ngram_lm_scale_0.6_attention_scale_1.2 10.61
|
644 |
+
ngram_lm_scale_0.6_attention_scale_4.0 10.61
|
645 |
+
ngram_lm_scale_0.6_attention_scale_5.0 10.61
|
646 |
+
ngram_lm_scale_0.7_attention_scale_1.7 10.61
|
647 |
+
ngram_lm_scale_0.7_attention_scale_1.9 10.61
|
648 |
+
ngram_lm_scale_0.7_attention_scale_2.0 10.61
|
649 |
+
ngram_lm_scale_0.7_attention_scale_2.1 10.61
|
650 |
+
ngram_lm_scale_0.7_attention_scale_2.2 10.61
|
651 |
+
ngram_lm_scale_0.7_attention_scale_2.3 10.61
|
652 |
+
ngram_lm_scale_0.7_attention_scale_2.5 10.61
|
653 |
+
ngram_lm_scale_0.7_attention_scale_3.0 10.61
|
654 |
+
ngram_lm_scale_0.7_attention_scale_4.0 10.61
|
655 |
+
ngram_lm_scale_0.7_attention_scale_5.0 10.61
|
656 |
+
ngram_lm_scale_0.1_attention_scale_1.1 10.62
|
657 |
+
ngram_lm_scale_0.3_attention_scale_4.0 10.62
|
658 |
+
ngram_lm_scale_0.3_attention_scale_5.0 10.62
|
659 |
+
ngram_lm_scale_0.5_attention_scale_0.7 10.62
|
660 |
+
ngram_lm_scale_0.6_attention_scale_1.0 10.62
|
661 |
+
ngram_lm_scale_0.6_attention_scale_1.1 10.62
|
662 |
+
ngram_lm_scale_0.7_attention_scale_1.5 10.62
|
663 |
+
ngram_lm_scale_0.9_attention_scale_3.0 10.62
|
664 |
+
ngram_lm_scale_0.9_attention_scale_4.0 10.62
|
665 |
+
ngram_lm_scale_0.9_attention_scale_5.0 10.62
|
666 |
+
ngram_lm_scale_1.0_attention_scale_4.0 10.62
|
667 |
+
ngram_lm_scale_1.1_attention_scale_5.0 10.62
|
668 |
+
ngram_lm_scale_0.05_attention_scale_1.1 10.63
|
669 |
+
ngram_lm_scale_0.05_attention_scale_1.2 10.63
|
670 |
+
ngram_lm_scale_0.08_attention_scale_0.9 10.63
|
671 |
+
ngram_lm_scale_0.08_attention_scale_1.0 10.63
|
672 |
+
ngram_lm_scale_0.08_attention_scale_1.1 10.63
|
673 |
+
ngram_lm_scale_0.08_attention_scale_1.2 10.63
|
674 |
+
ngram_lm_scale_0.08_attention_scale_1.3 10.63
|
675 |
+
ngram_lm_scale_0.08_attention_scale_1.9 10.63
|
676 |
+
ngram_lm_scale_0.08_attention_scale_2.0 10.63
|
677 |
+
ngram_lm_scale_0.08_attention_scale_2.1 10.63
|
678 |
+
ngram_lm_scale_0.08_attention_scale_2.2 10.63
|
679 |
+
ngram_lm_scale_0.08_attention_scale_2.3 10.63
|
680 |
+
ngram_lm_scale_0.08_attention_scale_3.0 10.63
|
681 |
+
ngram_lm_scale_0.1_attention_scale_0.5 10.63
|
682 |
+
ngram_lm_scale_0.1_attention_scale_0.6 10.63
|
683 |
+
ngram_lm_scale_0.1_attention_scale_0.7 10.63
|
684 |
+
ngram_lm_scale_0.1_attention_scale_0.9 10.63
|
685 |
+
ngram_lm_scale_0.1_attention_scale_1.0 10.63
|
686 |
+
ngram_lm_scale_0.1_attention_scale_1.2 10.63
|
687 |
+
ngram_lm_scale_0.1_attention_scale_1.3 10.63
|
688 |
+
ngram_lm_scale_0.1_attention_scale_1.7 10.63
|
689 |
+
ngram_lm_scale_0.1_attention_scale_1.9 10.63
|
690 |
+
ngram_lm_scale_0.1_attention_scale_2.0 10.63
|
691 |
+
ngram_lm_scale_0.1_attention_scale_2.1 10.63
|
692 |
+
ngram_lm_scale_0.1_attention_scale_2.2 10.63
|
693 |
+
ngram_lm_scale_0.1_attention_scale_2.3 10.63
|
694 |
+
ngram_lm_scale_0.1_attention_scale_2.5 10.63
|
695 |
+
ngram_lm_scale_0.1_attention_scale_3.0 10.63
|
696 |
+
ngram_lm_scale_0.1_attention_scale_5.0 10.63
|
697 |
+
ngram_lm_scale_0.5_attention_scale_0.6 10.63
|
698 |
+
ngram_lm_scale_0.6_attention_scale_0.9 10.63
|
699 |
+
ngram_lm_scale_0.9_attention_scale_2.3 10.63
|
700 |
+
ngram_lm_scale_0.9_attention_scale_2.5 10.63
|
701 |
+
ngram_lm_scale_1.0_attention_scale_5.0 10.63
|
702 |
+
ngram_lm_scale_1.2_attention_scale_5.0 10.63
|
703 |
+
ngram_lm_scale_0.01_attention_scale_0.9 10.64
|
704 |
+
ngram_lm_scale_0.01_attention_scale_1.0 10.64
|
705 |
+
ngram_lm_scale_0.01_attention_scale_1.1 10.64
|
706 |
+
ngram_lm_scale_0.01_attention_scale_1.2 10.64
|
707 |
+
ngram_lm_scale_0.01_attention_scale_4.0 10.64
|
708 |
+
ngram_lm_scale_0.01_attention_scale_5.0 10.64
|
709 |
+
ngram_lm_scale_0.05_attention_scale_0.5 10.64
|
710 |
+
ngram_lm_scale_0.05_attention_scale_0.6 10.64
|
711 |
+
ngram_lm_scale_0.05_attention_scale_0.7 10.64
|
712 |
+
ngram_lm_scale_0.05_attention_scale_0.9 10.64
|
713 |
+
ngram_lm_scale_0.05_attention_scale_1.0 10.64
|
714 |
+
ngram_lm_scale_0.05_attention_scale_1.3 10.64
|
715 |
+
ngram_lm_scale_0.05_attention_scale_1.5 10.64
|
716 |
+
ngram_lm_scale_0.05_attention_scale_1.7 10.64
|
717 |
+
ngram_lm_scale_0.05_attention_scale_1.9 10.64
|
718 |
+
ngram_lm_scale_0.05_attention_scale_2.0 10.64
|
719 |
+
ngram_lm_scale_0.05_attention_scale_2.1 10.64
|
720 |
+
ngram_lm_scale_0.05_attention_scale_2.2 10.64
|
721 |
+
ngram_lm_scale_0.05_attention_scale_2.3 10.64
|
722 |
+
ngram_lm_scale_0.05_attention_scale_2.5 10.64
|
723 |
+
ngram_lm_scale_0.05_attention_scale_3.0 10.64
|
724 |
+
ngram_lm_scale_0.05_attention_scale_4.0 10.64
|
725 |
+
ngram_lm_scale_0.05_attention_scale_5.0 10.64
|
726 |
+
ngram_lm_scale_0.08_attention_scale_0.5 10.64
|
727 |
+
ngram_lm_scale_0.08_attention_scale_0.6 10.64
|
728 |
+
ngram_lm_scale_0.08_attention_scale_0.7 10.64
|
729 |
+
ngram_lm_scale_0.08_attention_scale_1.5 10.64
|
730 |
+
ngram_lm_scale_0.08_attention_scale_1.7 10.64
|
731 |
+
ngram_lm_scale_0.08_attention_scale_2.5 10.64
|
732 |
+
ngram_lm_scale_0.08_attention_scale_4.0 10.64
|
733 |
+
ngram_lm_scale_0.08_attention_scale_5.0 10.64
|
734 |
+
ngram_lm_scale_0.1_attention_scale_0.3 10.64
|
735 |
+
ngram_lm_scale_0.1_attention_scale_1.5 10.64
|
736 |
+
ngram_lm_scale_0.1_attention_scale_4.0 10.64
|
737 |
+
ngram_lm_scale_0.7_attention_scale_1.3 10.64
|
738 |
+
ngram_lm_scale_0.9_attention_scale_2.2 10.64
|
739 |
+
ngram_lm_scale_1.0_attention_scale_3.0 10.64
|
740 |
+
ngram_lm_scale_1.1_attention_scale_4.0 10.64
|
741 |
+
ngram_lm_scale_1.3_attention_scale_5.0 10.64
|
742 |
+
ngram_lm_scale_0.01_attention_scale_0.6 10.65
|
743 |
+
ngram_lm_scale_0.01_attention_scale_0.7 10.65
|
744 |
+
ngram_lm_scale_0.01_attention_scale_1.3 10.65
|
745 |
+
ngram_lm_scale_0.01_attention_scale_1.5 10.65
|
746 |
+
ngram_lm_scale_0.01_attention_scale_1.7 10.65
|
747 |
+
ngram_lm_scale_0.01_attention_scale_1.9 10.65
|
748 |
+
ngram_lm_scale_0.01_attention_scale_2.0 10.65
|
749 |
+
ngram_lm_scale_0.01_attention_scale_2.1 10.65
|
750 |
+
ngram_lm_scale_0.01_attention_scale_2.2 10.65
|
751 |
+
ngram_lm_scale_0.01_attention_scale_2.3 10.65
|
752 |
+
ngram_lm_scale_0.01_attention_scale_2.5 10.65
|
753 |
+
ngram_lm_scale_0.01_attention_scale_3.0 10.65
|
754 |
+
ngram_lm_scale_0.08_attention_scale_0.3 10.65
|
755 |
+
ngram_lm_scale_0.5_attention_scale_0.5 10.65
|
756 |
+
ngram_lm_scale_0.6_attention_scale_0.7 10.65
|
757 |
+
ngram_lm_scale_0.7_attention_scale_1.1 10.65
|
758 |
+
ngram_lm_scale_0.7_attention_scale_1.2 10.65
|
759 |
+
ngram_lm_scale_0.9_attention_scale_2.1 10.65
|
760 |
+
ngram_lm_scale_1.2_attention_scale_4.0 10.65
|
761 |
+
ngram_lm_scale_0.05_attention_scale_0.3 10.66
|
762 |
+
ngram_lm_scale_0.7_attention_scale_1.0 10.66
|
763 |
+
ngram_lm_scale_0.9_attention_scale_1.9 10.66
|
764 |
+
ngram_lm_scale_0.9_attention_scale_2.0 10.66
|
765 |
+
ngram_lm_scale_1.0_attention_scale_2.5 10.66
|
766 |
+
ngram_lm_scale_1.1_attention_scale_3.0 10.66
|
767 |
+
ngram_lm_scale_0.01_attention_scale_0.5 10.67
|
768 |
+
ngram_lm_scale_0.1_attention_scale_0.08 10.67
|
769 |
+
ngram_lm_scale_0.1_attention_scale_0.1 10.67
|
770 |
+
ngram_lm_scale_0.6_attention_scale_0.6 10.67
|
771 |
+
ngram_lm_scale_0.9_attention_scale_1.7 10.67
|
772 |
+
ngram_lm_scale_1.0_attention_scale_2.2 10.67
|
773 |
+
ngram_lm_scale_1.0_attention_scale_2.3 10.67
|
774 |
+
ngram_lm_scale_1.3_attention_scale_4.0 10.67
|
775 |
+
ngram_lm_scale_1.5_attention_scale_5.0 10.67
|
776 |
+
ngram_lm_scale_0.01_attention_scale_0.3 10.68
|
777 |
+
ngram_lm_scale_0.08_attention_scale_0.08 10.68
|
778 |
+
ngram_lm_scale_0.08_attention_scale_0.1 10.68
|
779 |
+
ngram_lm_scale_0.3_attention_scale_0.08 10.68
|
780 |
+
ngram_lm_scale_0.3_attention_scale_0.1 10.68
|
781 |
+
ngram_lm_scale_0.7_attention_scale_0.9 10.68
|
782 |
+
ngram_lm_scale_1.0_attention_scale_2.0 10.68
|
783 |
+
ngram_lm_scale_1.0_attention_scale_2.1 10.68
|
784 |
+
ngram_lm_scale_1.1_attention_scale_2.5 10.68
|
785 |
+
ngram_lm_scale_1.2_attention_scale_3.0 10.68
|
786 |
+
ngram_lm_scale_0.1_attention_scale_0.05 10.69
|
787 |
+
ngram_lm_scale_0.5_attention_scale_0.3 10.69
|
788 |
+
ngram_lm_scale_0.9_attention_scale_1.5 10.69
|
789 |
+
ngram_lm_scale_1.0_attention_scale_1.9 10.69
|
790 |
+
ngram_lm_scale_1.1_attention_scale_2.3 10.69
|
791 |
+
ngram_lm_scale_0.05_attention_scale_0.1 10.7
|
792 |
+
ngram_lm_scale_0.08_attention_scale_0.05 10.7
|
793 |
+
ngram_lm_scale_0.3_attention_scale_0.05 10.7
|
794 |
+
ngram_lm_scale_0.6_attention_scale_0.5 10.7
|
795 |
+
ngram_lm_scale_1.1_attention_scale_2.2 10.7
|
796 |
+
ngram_lm_scale_1.5_attention_scale_4.0 10.7
|
797 |
+
ngram_lm_scale_1.7_attention_scale_5.0 10.7
|
798 |
+
ngram_lm_scale_0.05_attention_scale_0.08 10.71
|
799 |
+
ngram_lm_scale_1.1_attention_scale_2.1 10.71
|
800 |
+
ngram_lm_scale_1.2_attention_scale_2.5 10.71
|
801 |
+
ngram_lm_scale_1.3_attention_scale_3.0 10.71
|
802 |
+
ngram_lm_scale_0.01_attention_scale_0.1 10.72
|
803 |
+
ngram_lm_scale_0.05_attention_scale_0.05 10.72
|
804 |
+
ngram_lm_scale_0.08_attention_scale_0.01 10.72
|
805 |
+
ngram_lm_scale_0.1_attention_scale_0.01 10.72
|
806 |
+
ngram_lm_scale_0.3_attention_scale_0.01 10.72
|
807 |
+
ngram_lm_scale_0.7_attention_scale_0.7 10.72
|
808 |
+
ngram_lm_scale_0.9_attention_scale_1.3 10.72
|
809 |
+
ngram_lm_scale_1.0_attention_scale_1.7 10.72
|
810 |
+
ngram_lm_scale_1.1_attention_scale_2.0 10.72
|
811 |
+
ngram_lm_scale_0.01_attention_scale_0.08 10.73
|
812 |
+
ngram_lm_scale_0.9_attention_scale_1.2 10.73
|
813 |
+
ngram_lm_scale_1.1_attention_scale_1.9 10.73
|
814 |
+
ngram_lm_scale_1.2_attention_scale_2.3 10.73
|
815 |
+
ngram_lm_scale_1.0_attention_scale_1.5 10.74
|
816 |
+
ngram_lm_scale_1.2_attention_scale_2.2 10.74
|
817 |
+
ngram_lm_scale_1.3_attention_scale_2.5 10.74
|
818 |
+
ngram_lm_scale_1.9_attention_scale_5.0 10.74
|
819 |
+
ngram_lm_scale_0.01_attention_scale_0.05 10.75
|
820 |
+
ngram_lm_scale_0.05_attention_scale_0.01 10.75
|
821 |
+
ngram_lm_scale_0.7_attention_scale_0.6 10.75
|
822 |
+
ngram_lm_scale_0.9_attention_scale_1.1 10.75
|
823 |
+
ngram_lm_scale_1.1_attention_scale_1.7 10.75
|
824 |
+
ngram_lm_scale_1.2_attention_scale_2.1 10.75
|
825 |
+
ngram_lm_scale_1.7_attention_scale_4.0 10.75
|
826 |
+
ngram_lm_scale_1.2_attention_scale_2.0 10.76
|
827 |
+
ngram_lm_scale_1.3_attention_scale_2.3 10.76
|
828 |
+
ngram_lm_scale_2.0_attention_scale_5.0 10.76
|
829 |
+
ngram_lm_scale_1.0_attention_scale_1.3 10.77
|
830 |
+
ngram_lm_scale_1.2_attention_scale_1.9 10.77
|
831 |
+
ngram_lm_scale_1.5_attention_scale_3.0 10.77
|
832 |
+
ngram_lm_scale_0.01_attention_scale_0.01 10.78
|
833 |
+
ngram_lm_scale_0.6_attention_scale_0.3 10.78
|
834 |
+
ngram_lm_scale_0.7_attention_scale_0.5 10.78
|
835 |
+
ngram_lm_scale_0.9_attention_scale_1.0 10.78
|
836 |
+
ngram_lm_scale_2.1_attention_scale_5.0 10.78
|
837 |
+
ngram_lm_scale_1.1_attention_scale_1.5 10.79
|
838 |
+
ngram_lm_scale_1.3_attention_scale_2.2 10.79
|
839 |
+
ngram_lm_scale_0.5_attention_scale_0.1 10.8
|
840 |
+
ngram_lm_scale_1.0_attention_scale_1.2 10.8
|
841 |
+
ngram_lm_scale_1.3_attention_scale_2.1 10.8
|
842 |
+
ngram_lm_scale_1.9_attention_scale_4.0 10.8
|
843 |
+
ngram_lm_scale_2.2_attention_scale_5.0 10.8
|
844 |
+
ngram_lm_scale_0.5_attention_scale_0.08 10.81
|
845 |
+
ngram_lm_scale_0.9_attention_scale_0.9 10.81
|
846 |
+
ngram_lm_scale_1.2_attention_scale_1.7 10.81
|
847 |
+
ngram_lm_scale_1.3_attention_scale_2.0 10.81
|
848 |
+
ngram_lm_scale_1.0_attention_scale_1.1 10.82
|
849 |
+
ngram_lm_scale_0.5_attention_scale_0.05 10.83
|
850 |
+
ngram_lm_scale_1.1_attention_scale_1.3 10.83
|
851 |
+
ngram_lm_scale_1.3_attention_scale_1.9 10.83
|
852 |
+
ngram_lm_scale_1.5_attention_scale_2.5 10.84
|
853 |
+
ngram_lm_scale_2.3_attention_scale_5.0 10.84
|
854 |
+
ngram_lm_scale_1.0_attention_scale_1.0 10.85
|
855 |
+
ngram_lm_scale_1.2_attention_scale_1.5 10.85
|
856 |
+
ngram_lm_scale_2.0_attention_scale_4.0 10.85
|
857 |
+
ngram_lm_scale_1.1_attention_scale_1.2 10.86
|
858 |
+
ngram_lm_scale_1.7_attention_scale_3.0 10.86
|
859 |
+
ngram_lm_scale_0.5_attention_scale_0.01 10.87
|
860 |
+
ngram_lm_scale_1.5_attention_scale_2.3 10.87
|
861 |
+
ngram_lm_scale_0.7_attention_scale_0.3 10.88
|
862 |
+
ngram_lm_scale_0.9_attention_scale_0.7 10.88
|
863 |
+
ngram_lm_scale_1.3_attention_scale_1.7 10.88
|
864 |
+
ngram_lm_scale_1.0_attention_scale_0.9 10.89
|
865 |
+
ngram_lm_scale_1.5_attention_scale_2.2 10.89
|
866 |
+
ngram_lm_scale_2.1_attention_scale_4.0 10.89
|
867 |
+
ngram_lm_scale_1.1_attention_scale_1.1 10.91
|
868 |
+
ngram_lm_scale_0.6_attention_scale_0.1 10.92
|
869 |
+
ngram_lm_scale_0.9_attention_scale_0.6 10.92
|
870 |
+
ngram_lm_scale_1.5_attention_scale_2.1 10.92
|
871 |
+
ngram_lm_scale_1.2_attention_scale_1.3 10.93
|
872 |
+
ngram_lm_scale_2.5_attention_scale_5.0 10.93
|
873 |
+
ngram_lm_scale_0.6_attention_scale_0.08 10.94
|
874 |
+
ngram_lm_scale_2.2_attention_scale_4.0 10.94
|
875 |
+
ngram_lm_scale_1.1_attention_scale_1.0 10.95
|
876 |
+
ngram_lm_scale_1.3_attention_scale_1.5 10.95
|
877 |
+
ngram_lm_scale_1.5_attention_scale_2.0 10.96
|
878 |
+
ngram_lm_scale_1.2_attention_scale_1.2 10.97
|
879 |
+
ngram_lm_scale_1.7_attention_scale_2.5 10.97
|
880 |
+
ngram_lm_scale_0.6_attention_scale_0.05 10.98
|
881 |
+
ngram_lm_scale_1.9_attention_scale_3.0 10.98
|
882 |
+
ngram_lm_scale_1.0_attention_scale_0.7 10.99
|
883 |
+
ngram_lm_scale_1.5_attention_scale_1.9 10.99
|
884 |
+
ngram_lm_scale_2.3_attention_scale_4.0 10.99
|
885 |
+
ngram_lm_scale_0.9_attention_scale_0.5 11.0
|
886 |
+
ngram_lm_scale_1.1_attention_scale_0.9 11.0
|
887 |
+
ngram_lm_scale_0.6_attention_scale_0.01 11.02
|
888 |
+
ngram_lm_scale_1.2_attention_scale_1.1 11.02
|
889 |
+
ngram_lm_scale_1.7_attention_scale_2.3 11.03
|
890 |
+
ngram_lm_scale_1.3_attention_scale_1.3 11.05
|
891 |
+
ngram_lm_scale_2.0_attention_scale_3.0 11.05
|
892 |
+
ngram_lm_scale_1.7_attention_scale_2.2 11.07
|
893 |
+
ngram_lm_scale_1.0_attention_scale_0.6 11.08
|
894 |
+
ngram_lm_scale_1.5_attention_scale_1.7 11.08
|
895 |
+
ngram_lm_scale_1.2_attention_scale_1.0 11.09
|
896 |
+
ngram_lm_scale_0.7_attention_scale_0.1 11.1
|
897 |
+
ngram_lm_scale_1.3_attention_scale_1.2 11.1
|
898 |
+
ngram_lm_scale_1.7_attention_scale_2.1 11.11
|
899 |
+
ngram_lm_scale_2.1_attention_scale_3.0 11.12
|
900 |
+
ngram_lm_scale_2.5_attention_scale_4.0 11.12
|
901 |
+
ngram_lm_scale_0.7_attention_scale_0.08 11.13
|
902 |
+
ngram_lm_scale_1.9_attention_scale_2.5 11.13
|
903 |
+
ngram_lm_scale_1.7_attention_scale_2.0 11.14
|
904 |
+
ngram_lm_scale_1.2_attention_scale_0.9 11.16
|
905 |
+
ngram_lm_scale_1.1_attention_scale_0.7 11.17
|
906 |
+
ngram_lm_scale_1.3_attention_scale_1.1 11.17
|
907 |
+
ngram_lm_scale_3.0_attention_scale_5.0 11.17
|
908 |
+
ngram_lm_scale_0.7_attention_scale_0.05 11.18
|
909 |
+
ngram_lm_scale_1.5_attention_scale_1.5 11.18
|
910 |
+
ngram_lm_scale_1.0_attention_scale_0.5 11.19
|
911 |
+
ngram_lm_scale_1.7_attention_scale_1.9 11.2
|
912 |
+
ngram_lm_scale_2.2_attention_scale_3.0 11.21
|
913 |
+
ngram_lm_scale_1.9_attention_scale_2.3 11.22
|
914 |
+
ngram_lm_scale_2.0_attention_scale_2.5 11.23
|
915 |
+
ngram_lm_scale_0.9_attention_scale_0.3 11.25
|
916 |
+
ngram_lm_scale_1.3_attention_scale_1.0 11.26
|
917 |
+
ngram_lm_scale_0.7_attention_scale_0.01 11.27
|
918 |
+
ngram_lm_scale_1.9_attention_scale_2.2 11.27
|
919 |
+
ngram_lm_scale_1.1_attention_scale_0.6 11.29
|
920 |
+
ngram_lm_scale_2.3_attention_scale_3.0 11.31
|
921 |
+
ngram_lm_scale_1.7_attention_scale_1.7 11.33
|
922 |
+
ngram_lm_scale_1.5_attention_scale_1.3 11.34
|
923 |
+
ngram_lm_scale_1.9_attention_scale_2.1 11.34
|
924 |
+
ngram_lm_scale_2.0_attention_scale_2.3 11.34
|
925 |
+
ngram_lm_scale_2.1_attention_scale_2.5 11.35
|
926 |
+
ngram_lm_scale_1.3_attention_scale_0.9 11.36
|
927 |
+
ngram_lm_scale_1.2_attention_scale_0.7 11.39
|
928 |
+
ngram_lm_scale_1.9_attention_scale_2.0 11.4
|
929 |
+
ngram_lm_scale_2.0_attention_scale_2.2 11.4
|
930 |
+
ngram_lm_scale_1.5_attention_scale_1.2 11.43
|
931 |
+
ngram_lm_scale_1.1_attention_scale_0.5 11.44
|
932 |
+
ngram_lm_scale_2.0_attention_scale_2.1 11.47
|
933 |
+
ngram_lm_scale_2.1_attention_scale_2.3 11.47
|
934 |
+
ngram_lm_scale_2.2_attention_scale_2.5 11.47
|
935 |
+
ngram_lm_scale_1.9_attention_scale_1.9 11.48
|
936 |
+
ngram_lm_scale_1.7_attention_scale_1.5 11.5
|
937 |
+
ngram_lm_scale_2.5_attention_scale_3.0 11.51
|
938 |
+
ngram_lm_scale_3.0_attention_scale_4.0 11.51
|
939 |
+
ngram_lm_scale_1.0_attention_scale_0.3 11.53
|
940 |
+
ngram_lm_scale_1.2_attention_scale_0.6 11.53
|
941 |
+
ngram_lm_scale_1.5_attention_scale_1.1 11.54
|
942 |
+
ngram_lm_scale_2.1_attention_scale_2.2 11.54
|
943 |
+
ngram_lm_scale_2.0_attention_scale_2.0 11.55
|
944 |
+
ngram_lm_scale_2.3_attention_scale_2.5 11.59
|
945 |
+
ngram_lm_scale_2.2_attention_scale_2.3 11.61
|
946 |
+
ngram_lm_scale_2.1_attention_scale_2.1 11.62
|
947 |
+
ngram_lm_scale_1.3_attention_scale_0.7 11.63
|
948 |
+
ngram_lm_scale_2.0_attention_scale_1.9 11.63
|
949 |
+
ngram_lm_scale_1.9_attention_scale_1.7 11.66
|
950 |
+
ngram_lm_scale_1.5_attention_scale_1.0 11.67
|
951 |
+
ngram_lm_scale_2.2_attention_scale_2.2 11.69
|
952 |
+
ngram_lm_scale_0.9_attention_scale_0.1 11.7
|
953 |
+
ngram_lm_scale_2.1_attention_scale_2.0 11.71
|
954 |
+
ngram_lm_scale_1.2_attention_scale_0.5 11.72
|
955 |
+
ngram_lm_scale_1.7_attention_scale_1.3 11.72
|
956 |
+
ngram_lm_scale_2.3_attention_scale_2.3 11.75
|
957 |
+
ngram_lm_scale_0.9_attention_scale_0.08 11.77
|
958 |
+
ngram_lm_scale_2.2_attention_scale_2.1 11.78
|
959 |
+
ngram_lm_scale_2.1_attention_scale_1.9 11.82
|
960 |
+
ngram_lm_scale_1.3_attention_scale_0.6 11.83
|
961 |
+
ngram_lm_scale_1.5_attention_scale_0.9 11.85
|
962 |
+
ngram_lm_scale_2.0_attention_scale_1.7 11.85
|
963 |
+
ngram_lm_scale_2.3_attention_scale_2.2 11.86
|
964 |
+
ngram_lm_scale_0.9_attention_scale_0.05 11.87
|
965 |
+
ngram_lm_scale_1.1_attention_scale_0.3 11.87
|
966 |
+
ngram_lm_scale_1.7_attention_scale_1.2 11.88
|
967 |
+
ngram_lm_scale_1.9_attention_scale_1.5 11.9
|
968 |
+
ngram_lm_scale_2.2_attention_scale_2.0 11.9
|
969 |
+
ngram_lm_scale_2.5_attention_scale_2.5 11.9
|
970 |
+
ngram_lm_scale_4.0_attention_scale_5.0 11.93
|
971 |
+
ngram_lm_scale_2.3_attention_scale_2.1 11.97
|
972 |
+
ngram_lm_scale_0.9_attention_scale_0.01 12.0
|
973 |
+
ngram_lm_scale_2.2_attention_scale_1.9 12.02
|
974 |
+
ngram_lm_scale_1.7_attention_scale_1.1 12.05
|
975 |
+
ngram_lm_scale_1.3_attention_scale_0.5 12.07
|
976 |
+
ngram_lm_scale_2.1_attention_scale_1.7 12.07
|
977 |
+
ngram_lm_scale_2.3_attention_scale_2.0 12.09
|
978 |
+
ngram_lm_scale_1.0_attention_scale_0.1 12.11
|
979 |
+
ngram_lm_scale_2.5_attention_scale_2.3 12.11
|
980 |
+
ngram_lm_scale_2.0_attention_scale_1.5 12.14
|
981 |
+
ngram_lm_scale_1.0_attention_scale_0.08 12.19
|
982 |
+
ngram_lm_scale_3.0_attention_scale_3.0 12.19
|
983 |
+
ngram_lm_scale_1.9_attention_scale_1.3 12.22
|
984 |
+
ngram_lm_scale_1.7_attention_scale_1.0 12.23
|
985 |
+
ngram_lm_scale_2.3_attention_scale_1.9 12.23
|
986 |
+
ngram_lm_scale_2.5_attention_scale_2.2 12.23
|
987 |
+
ngram_lm_scale_1.5_attention_scale_0.7 12.27
|
988 |
+
ngram_lm_scale_1.2_attention_scale_0.3 12.28
|
989 |
+
ngram_lm_scale_2.2_attention_scale_1.7 12.3
|
990 |
+
ngram_lm_scale_1.0_attention_scale_0.05 12.32
|
991 |
+
ngram_lm_scale_2.5_attention_scale_2.1 12.37
|
992 |
+
ngram_lm_scale_2.1_attention_scale_1.5 12.39
|
993 |
+
ngram_lm_scale_1.9_attention_scale_1.2 12.41
|
994 |
+
ngram_lm_scale_1.7_attention_scale_0.9 12.46
|
995 |
+
ngram_lm_scale_1.0_attention_scale_0.01 12.49
|
996 |
+
ngram_lm_scale_2.0_attention_scale_1.3 12.5
|
997 |
+
ngram_lm_scale_2.5_attention_scale_2.0 12.51
|
998 |
+
ngram_lm_scale_2.3_attention_scale_1.7 12.54
|
999 |
+
ngram_lm_scale_1.5_attention_scale_0.6 12.55
|
1000 |
+
ngram_lm_scale_1.1_attention_scale_0.1 12.58
|
1001 |
+
ngram_lm_scale_1.9_attention_scale_1.1 12.62
|
1002 |
+
ngram_lm_scale_2.2_attention_scale_1.5 12.64
|
1003 |
+
ngram_lm_scale_1.1_attention_scale_0.08 12.67
|
1004 |
+
ngram_lm_scale_2.5_attention_scale_1.9 12.67
|
1005 |
+
ngram_lm_scale_4.0_attention_scale_4.0 12.67
|
1006 |
+
ngram_lm_scale_1.3_attention_scale_0.3 12.71
|
1007 |
+
ngram_lm_scale_2.0_attention_scale_1.2 12.71
|
1008 |
+
ngram_lm_scale_2.1_attention_scale_1.3 12.78
|
1009 |
+
ngram_lm_scale_3.0_attention_scale_2.5 12.8
|
1010 |
+
ngram_lm_scale_1.1_attention_scale_0.05 12.81
|
1011 |
+
ngram_lm_scale_1.9_attention_scale_1.0 12.85
|
1012 |
+
ngram_lm_scale_1.5_attention_scale_0.5 12.86
|
1013 |
+
ngram_lm_scale_2.3_attention_scale_1.5 12.91
|
1014 |
+
ngram_lm_scale_2.0_attention_scale_1.1 12.92
|
1015 |
+
ngram_lm_scale_1.7_attention_scale_0.7 12.99
|
1016 |
+
ngram_lm_scale_2.1_attention_scale_1.2 12.99
|
1017 |
+
ngram_lm_scale_5.0_attention_scale_5.0 13.01
|
1018 |
+
ngram_lm_scale_1.1_attention_scale_0.01 13.02
|
1019 |
+
ngram_lm_scale_2.5_attention_scale_1.7 13.02
|
1020 |
+
ngram_lm_scale_2.2_attention_scale_1.3 13.05
|
1021 |
+
ngram_lm_scale_3.0_attention_scale_2.3 13.09
|
1022 |
+
ngram_lm_scale_1.2_attention_scale_0.1 13.1
|
1023 |
+
ngram_lm_scale_1.9_attention_scale_0.9 13.11
|
1024 |
+
ngram_lm_scale_2.0_attention_scale_1.0 13.17
|
1025 |
+
ngram_lm_scale_1.2_attention_scale_0.08 13.2
|
1026 |
+
ngram_lm_scale_2.1_attention_scale_1.1 13.22
|
1027 |
+
ngram_lm_scale_3.0_attention_scale_2.2 13.24
|
1028 |
+
ngram_lm_scale_2.2_attention_scale_1.2 13.28
|
1029 |
+
ngram_lm_scale_1.7_attention_scale_0.6 13.33
|
1030 |
+
ngram_lm_scale_2.3_attention_scale_1.3 13.34
|
1031 |
+
ngram_lm_scale_1.2_attention_scale_0.05 13.36
|
1032 |
+
ngram_lm_scale_3.0_attention_scale_2.1 13.42
|
1033 |
+
ngram_lm_scale_2.5_attention_scale_1.5 13.43
|
1034 |
+
ngram_lm_scale_2.0_attention_scale_0.9 13.48
|
1035 |
+
ngram_lm_scale_2.1_attention_scale_1.0 13.51
|
1036 |
+
ngram_lm_scale_2.2_attention_scale_1.1 13.56
|
1037 |
+
ngram_lm_scale_1.2_attention_scale_0.01 13.6
|
1038 |
+
ngram_lm_scale_2.3_attention_scale_1.2 13.6
|
1039 |
+
ngram_lm_scale_3.0_attention_scale_2.0 13.62
|
1040 |
+
ngram_lm_scale_1.3_attention_scale_0.1 13.65
|
1041 |
+
ngram_lm_scale_1.5_attention_scale_0.3 13.68
|
1042 |
+
ngram_lm_scale_1.7_attention_scale_0.5 13.72
|
1043 |
+
ngram_lm_scale_1.3_attention_scale_0.08 13.76
|
1044 |
+
ngram_lm_scale_1.9_attention_scale_0.7 13.78
|
1045 |
+
ngram_lm_scale_3.0_attention_scale_1.9 13.81
|
1046 |
+
ngram_lm_scale_2.1_attention_scale_0.9 13.82
|
1047 |
+
ngram_lm_scale_2.2_attention_scale_1.0 13.85
|
1048 |
+
ngram_lm_scale_4.0_attention_scale_3.0 13.85
|
1049 |
+
ngram_lm_scale_2.3_attention_scale_1.1 13.89
|
1050 |
+
ngram_lm_scale_1.3_attention_scale_0.05 13.94
|
1051 |
+
ngram_lm_scale_2.5_attention_scale_1.3 13.94
|
1052 |
+
ngram_lm_scale_5.0_attention_scale_4.0 13.97
|
1053 |
+
ngram_lm_scale_1.9_attention_scale_0.6 14.15
|
1054 |
+
ngram_lm_scale_2.0_attention_scale_0.7 14.16
|
1055 |
+
ngram_lm_scale_2.2_attention_scale_0.9 14.17
|
1056 |
+
ngram_lm_scale_2.3_attention_scale_1.0 14.19
|
1057 |
+
ngram_lm_scale_1.3_attention_scale_0.01 14.2
|
1058 |
+
ngram_lm_scale_2.5_attention_scale_1.2 14.2
|
1059 |
+
ngram_lm_scale_3.0_attention_scale_1.7 14.26
|
1060 |
+
ngram_lm_scale_2.5_attention_scale_1.1 14.48
|
1061 |
+
ngram_lm_scale_2.3_attention_scale_0.9 14.5
|
1062 |
+
ngram_lm_scale_2.1_attention_scale_0.7 14.53
|
1063 |
+
ngram_lm_scale_2.0_attention_scale_0.6 14.54
|
1064 |
+
ngram_lm_scale_1.9_attention_scale_0.5 14.57
|
1065 |
+
ngram_lm_scale_4.0_attention_scale_2.5 14.63
|
1066 |
+
ngram_lm_scale_1.7_attention_scale_0.3 14.64
|
1067 |
+
ngram_lm_scale_3.0_attention_scale_1.5 14.71
|
1068 |
+
ngram_lm_scale_1.5_attention_scale_0.1 14.75
|
1069 |
+
ngram_lm_scale_2.5_attention_scale_1.0 14.79
|
1070 |
+
ngram_lm_scale_2.2_attention_scale_0.7 14.86
|
1071 |
+
ngram_lm_scale_1.5_attention_scale_0.08 14.87
|
1072 |
+
ngram_lm_scale_2.1_attention_scale_0.6 14.91
|
1073 |
+
ngram_lm_scale_2.0_attention_scale_0.5 14.95
|
1074 |
+
ngram_lm_scale_4.0_attention_scale_2.3 14.98
|
1075 |
+
ngram_lm_scale_1.5_attention_scale_0.05 15.05
|
1076 |
+
ngram_lm_scale_2.5_attention_scale_0.9 15.12
|
1077 |
+
ngram_lm_scale_4.0_attention_scale_2.2 15.17
|
1078 |
+
ngram_lm_scale_2.3_attention_scale_0.7 15.21
|
1079 |
+
ngram_lm_scale_3.0_attention_scale_1.3 15.22
|
1080 |
+
ngram_lm_scale_2.2_attention_scale_0.6 15.27
|
1081 |
+
ngram_lm_scale_1.5_attention_scale_0.01 15.3
|
1082 |
+
ngram_lm_scale_5.0_attention_scale_3.0 15.32
|
1083 |
+
ngram_lm_scale_2.1_attention_scale_0.5 15.33
|
1084 |
+
ngram_lm_scale_4.0_attention_scale_2.1 15.37
|
1085 |
+
ngram_lm_scale_1.9_attention_scale_0.3 15.5
|
1086 |
+
ngram_lm_scale_3.0_attention_scale_1.2 15.51
|
1087 |
+
ngram_lm_scale_4.0_attention_scale_2.0 15.57
|
1088 |
+
ngram_lm_scale_2.3_attention_scale_0.6 15.61
|
1089 |
+
ngram_lm_scale_2.2_attention_scale_0.5 15.68
|
1090 |
+
ngram_lm_scale_1.7_attention_scale_0.1 15.72
|
1091 |
+
ngram_lm_scale_4.0_attention_scale_1.9 15.79
|
1092 |
+
ngram_lm_scale_3.0_attention_scale_1.1 15.82
|
1093 |
+
ngram_lm_scale_1.7_attention_scale_0.08 15.83
|
1094 |
+
ngram_lm_scale_2.5_attention_scale_0.7 15.85
|
1095 |
+
ngram_lm_scale_2.0_attention_scale_0.3 15.87
|
1096 |
+
ngram_lm_scale_2.3_attention_scale_0.5 16.0
|
1097 |
+
ngram_lm_scale_1.7_attention_scale_0.05 16.01
|
1098 |
+
ngram_lm_scale_3.0_attention_scale_1.0 16.11
|
1099 |
+
ngram_lm_scale_5.0_attention_scale_2.5 16.12
|
1100 |
+
ngram_lm_scale_2.5_attention_scale_0.6 16.19
|
1101 |
+
ngram_lm_scale_2.1_attention_scale_0.3 16.2
|
1102 |
+
ngram_lm_scale_4.0_attention_scale_1.7 16.22
|
1103 |
+
ngram_lm_scale_1.7_attention_scale_0.01 16.23
|
1104 |
+
ngram_lm_scale_3.0_attention_scale_0.9 16.4
|
1105 |
+
ngram_lm_scale_5.0_attention_scale_2.3 16.44
|
1106 |
+
ngram_lm_scale_1.9_attention_scale_0.1 16.5
|
1107 |
+
ngram_lm_scale_2.2_attention_scale_0.3 16.53
|
1108 |
+
ngram_lm_scale_2.5_attention_scale_0.5 16.54
|
1109 |
+
ngram_lm_scale_1.9_attention_scale_0.08 16.6
|
1110 |
+
ngram_lm_scale_5.0_attention_scale_2.2 16.6
|
1111 |
+
ngram_lm_scale_4.0_attention_scale_1.5 16.63
|
1112 |
+
ngram_lm_scale_1.9_attention_scale_0.05 16.74
|
1113 |
+
ngram_lm_scale_5.0_attention_scale_2.1 16.77
|
1114 |
+
ngram_lm_scale_2.3_attention_scale_0.3 16.81
|
1115 |
+
ngram_lm_scale_2.0_attention_scale_0.1 16.83
|
1116 |
+
ngram_lm_scale_2.0_attention_scale_0.08 16.92
|
1117 |
+
ngram_lm_scale_5.0_attention_scale_2.0 16.94
|
1118 |
+
ngram_lm_scale_1.9_attention_scale_0.01 16.95
|
1119 |
+
ngram_lm_scale_3.0_attention_scale_0.7 16.96
|
1120 |
+
ngram_lm_scale_2.0_attention_scale_0.05 17.05
|
1121 |
+
ngram_lm_scale_4.0_attention_scale_1.3 17.05
|
1122 |
+
ngram_lm_scale_2.1_attention_scale_0.1 17.11
|
1123 |
+
ngram_lm_scale_5.0_attention_scale_1.9 17.11
|
1124 |
+
ngram_lm_scale_2.1_attention_scale_0.08 17.21
|
1125 |
+
ngram_lm_scale_2.0_attention_scale_0.01 17.24
|
1126 |
+
ngram_lm_scale_3.0_attention_scale_0.6 17.26
|
1127 |
+
ngram_lm_scale_4.0_attention_scale_1.2 17.27
|
1128 |
+
ngram_lm_scale_2.5_attention_scale_0.3 17.28
|
1129 |
+
ngram_lm_scale_2.1_attention_scale_0.05 17.34
|
1130 |
+
ngram_lm_scale_2.2_attention_scale_0.1 17.38
|
1131 |
+
ngram_lm_scale_5.0_attention_scale_1.7 17.44
|
1132 |
+
ngram_lm_scale_2.2_attention_scale_0.08 17.46
|
1133 |
+
ngram_lm_scale_4.0_attention_scale_1.1 17.5
|
1134 |
+
ngram_lm_scale_2.1_attention_scale_0.01 17.52
|
1135 |
+
ngram_lm_scale_3.0_attention_scale_0.5 17.57
|
1136 |
+
ngram_lm_scale_2.2_attention_scale_0.05 17.59
|
1137 |
+
ngram_lm_scale_2.3_attention_scale_0.1 17.62
|
1138 |
+
ngram_lm_scale_2.3_attention_scale_0.08 17.7
|
1139 |
+
ngram_lm_scale_4.0_attention_scale_1.0 17.72
|
1140 |
+
ngram_lm_scale_2.2_attention_scale_0.01 17.76
|
1141 |
+
ngram_lm_scale_5.0_attention_scale_1.5 17.8
|
1142 |
+
ngram_lm_scale_2.3_attention_scale_0.05 17.82
|
1143 |
+
ngram_lm_scale_4.0_attention_scale_0.9 17.94
|
1144 |
+
ngram_lm_scale_2.3_attention_scale_0.01 17.98
|
1145 |
+
ngram_lm_scale_2.5_attention_scale_0.1 18.03
|
1146 |
+
ngram_lm_scale_2.5_attention_scale_0.08 18.1
|
1147 |
+
ngram_lm_scale_5.0_attention_scale_1.3 18.12
|
1148 |
+
ngram_lm_scale_3.0_attention_scale_0.3 18.17
|
1149 |
+
ngram_lm_scale_2.5_attention_scale_0.05 18.2
|
1150 |
+
ngram_lm_scale_5.0_attention_scale_1.2 18.29
|
1151 |
+
ngram_lm_scale_2.5_attention_scale_0.01 18.33
|
1152 |
+
ngram_lm_scale_4.0_attention_scale_0.7 18.36
|
1153 |
+
ngram_lm_scale_5.0_attention_scale_1.1 18.48
|
1154 |
+
ngram_lm_scale_4.0_attention_scale_0.6 18.58
|
1155 |
+
ngram_lm_scale_5.0_attention_scale_1.0 18.65
|
1156 |
+
ngram_lm_scale_3.0_attention_scale_0.1 18.75
|
1157 |
+
ngram_lm_scale_4.0_attention_scale_0.5 18.79
|
1158 |
+
ngram_lm_scale_3.0_attention_scale_0.08 18.81
|
1159 |
+
ngram_lm_scale_5.0_attention_scale_0.9 18.81
|
1160 |
+
ngram_lm_scale_3.0_attention_scale_0.05 18.89
|
1161 |
+
ngram_lm_scale_3.0_attention_scale_0.01 18.99
|
1162 |
+
ngram_lm_scale_5.0_attention_scale_0.7 19.11
|
1163 |
+
ngram_lm_scale_4.0_attention_scale_0.3 19.18
|
1164 |
+
ngram_lm_scale_5.0_attention_scale_0.6 19.25
|
1165 |
+
ngram_lm_scale_5.0_attention_scale_0.5 19.41
|
1166 |
+
ngram_lm_scale_4.0_attention_scale_0.1 19.57
|
1167 |
+
ngram_lm_scale_4.0_attention_scale_0.08 19.61
|
1168 |
+
ngram_lm_scale_4.0_attention_scale_0.05 19.67
|
1169 |
+
ngram_lm_scale_5.0_attention_scale_0.3 19.71
|
1170 |
+
ngram_lm_scale_4.0_attention_scale_0.01 19.73
|
1171 |
+
ngram_lm_scale_5.0_attention_scale_0.1 19.99
|
1172 |
+
ngram_lm_scale_5.0_attention_scale_0.08 20.01
|
1173 |
+
ngram_lm_scale_5.0_attention_scale_0.05 20.05
|
1174 |
+
ngram_lm_scale_5.0_attention_scale_0.01 20.11
|
1175 |
+
|
1176 |
+
2022-04-09 04:57:33,455 INFO [decode_test.py:730] Done!
|