whitemouse84
commited on
Commit
•
2412ed2
1
Parent(s):
6c24a5a
Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- 2_Dense/config.json +1 -0
- 2_Dense/model.safetensors +3 -0
- README.md +706 -0
- config.json +32 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +26 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +64 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
2_Dense/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"in_features": 768, "out_features": 768, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
|
2_Dense/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f403f7a3c694bb883eb53f22727d5cd79ceaf4bce215ed1b357a4abb36e7d403
|
3 |
+
size 2362528
|
README.md
ADDED
@@ -0,0 +1,706 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: cointegrated/LaBSE-en-ru
|
3 |
+
datasets: []
|
4 |
+
language: []
|
5 |
+
library_name: sentence-transformers
|
6 |
+
metrics:
|
7 |
+
- pearson_cosine
|
8 |
+
- spearman_cosine
|
9 |
+
- pearson_manhattan
|
10 |
+
- spearman_manhattan
|
11 |
+
- pearson_euclidean
|
12 |
+
- spearman_euclidean
|
13 |
+
- pearson_dot
|
14 |
+
- spearman_dot
|
15 |
+
- pearson_max
|
16 |
+
- spearman_max
|
17 |
+
- negative_mse
|
18 |
+
pipeline_tag: sentence-similarity
|
19 |
+
tags:
|
20 |
+
- sentence-transformers
|
21 |
+
- sentence-similarity
|
22 |
+
- feature-extraction
|
23 |
+
- generated_from_trainer
|
24 |
+
- dataset_size:10975066
|
25 |
+
- loss:MSELoss
|
26 |
+
widget:
|
27 |
+
- source_sentence: Такие лодки строились, чтобы получить быстрый доступ к приходящим
|
28 |
+
судам.
|
29 |
+
sentences:
|
30 |
+
- been nice talking to you
|
31 |
+
- Нельзя ставить под сомнение притязания клиента, если не были предприняты шаги.
|
32 |
+
- Dharangaon Railway Station serves Dharangaon in Jalgaon district in the Indian
|
33 |
+
state of Maharashtra.
|
34 |
+
- source_sentence: Если прилагательные смягчают этнические термины, существительные
|
35 |
+
могут сделать их жестче.
|
36 |
+
sentences:
|
37 |
+
- Вслед за этим последовало секретное письмо А.Б.Чубайса об изъятии у МЦР, переданного
|
38 |
+
ему С.Н.Рерихом наследия.
|
39 |
+
- Coaches should not give young athletes a hard time.
|
40 |
+
- Эшкрофт хотел прослушивать сводки новостей снова и снова
|
41 |
+
- source_sentence: Земля была мягкой.
|
42 |
+
sentences:
|
43 |
+
- По мере того, как самообладание покидало его, сердце его все больше наполнялось
|
44 |
+
тревогой.
|
45 |
+
- Our borders and immigration system, including law enforcement, ought to send a
|
46 |
+
message of welcome, tolerance, and justice to members of immigrant communities
|
47 |
+
in the United States and in their countries of origin.
|
48 |
+
- Начнут действовать льготные условия аренды земель, которые предназначены для реализации
|
49 |
+
инвестиционных проектов.
|
50 |
+
- source_sentence: 'Что же касается рава Кука: мой рав лично знал его и много раз
|
51 |
+
с теплотой рассказывал мне о нем как о великом каббалисте.'
|
52 |
+
sentences:
|
53 |
+
- Вдова Эдгара Эванса, его дети и мать получили 1500 фунтов стерлингов (
|
54 |
+
- Please do not make any changes to your address.
|
55 |
+
- Мы уже закончили все запланированные дела!
|
56 |
+
- source_sentence: See Name section.
|
57 |
+
sentences:
|
58 |
+
- Ms. Packard is the voice of the female blood elf in the video game World of Warcraft.
|
59 |
+
- Основным функциональным элементом, реализующим функции управления соединением,
|
60 |
+
является абонентский терминал.
|
61 |
+
- Yeah, people who might not be hungry.
|
62 |
+
model-index:
|
63 |
+
- name: SentenceTransformer based on cointegrated/LaBSE-en-ru
|
64 |
+
results:
|
65 |
+
- task:
|
66 |
+
type: semantic-similarity
|
67 |
+
name: Semantic Similarity
|
68 |
+
dataset:
|
69 |
+
name: sts dev
|
70 |
+
type: sts-dev
|
71 |
+
metrics:
|
72 |
+
- type: pearson_cosine
|
73 |
+
value: 0.5305176535187099
|
74 |
+
name: Pearson Cosine
|
75 |
+
- type: spearman_cosine
|
76 |
+
value: 0.6347069834349862
|
77 |
+
name: Spearman Cosine
|
78 |
+
- type: pearson_manhattan
|
79 |
+
value: 0.5553415140113596
|
80 |
+
name: Pearson Manhattan
|
81 |
+
- type: spearman_manhattan
|
82 |
+
value: 0.6389336208598283
|
83 |
+
name: Spearman Manhattan
|
84 |
+
- type: pearson_euclidean
|
85 |
+
value: 0.5499910306125031
|
86 |
+
name: Pearson Euclidean
|
87 |
+
- type: spearman_euclidean
|
88 |
+
value: 0.6347073809507647
|
89 |
+
name: Spearman Euclidean
|
90 |
+
- type: pearson_dot
|
91 |
+
value: 0.5305176585564861
|
92 |
+
name: Pearson Dot
|
93 |
+
- type: spearman_dot
|
94 |
+
value: 0.6347078463557637
|
95 |
+
name: Spearman Dot
|
96 |
+
- type: pearson_max
|
97 |
+
value: 0.5553415140113596
|
98 |
+
name: Pearson Max
|
99 |
+
- type: spearman_max
|
100 |
+
value: 0.6389336208598283
|
101 |
+
name: Spearman Max
|
102 |
+
- task:
|
103 |
+
type: knowledge-distillation
|
104 |
+
name: Knowledge Distillation
|
105 |
+
dataset:
|
106 |
+
name: Unknown
|
107 |
+
type: unknown
|
108 |
+
metrics:
|
109 |
+
- type: negative_mse
|
110 |
+
value: -0.006337030936265364
|
111 |
+
name: Negative Mse
|
112 |
+
- task:
|
113 |
+
type: semantic-similarity
|
114 |
+
name: Semantic Similarity
|
115 |
+
dataset:
|
116 |
+
name: sts test
|
117 |
+
type: sts-test
|
118 |
+
metrics:
|
119 |
+
- type: pearson_cosine
|
120 |
+
value: 0.5042796836494269
|
121 |
+
name: Pearson Cosine
|
122 |
+
- type: spearman_cosine
|
123 |
+
value: 0.5986471772428711
|
124 |
+
name: Spearman Cosine
|
125 |
+
- type: pearson_manhattan
|
126 |
+
value: 0.522744495080616
|
127 |
+
name: Pearson Manhattan
|
128 |
+
- type: spearman_manhattan
|
129 |
+
value: 0.5983901280447074
|
130 |
+
name: Spearman Manhattan
|
131 |
+
- type: pearson_euclidean
|
132 |
+
value: 0.522721961447153
|
133 |
+
name: Pearson Euclidean
|
134 |
+
- type: spearman_euclidean
|
135 |
+
value: 0.5986471095414022
|
136 |
+
name: Spearman Euclidean
|
137 |
+
- type: pearson_dot
|
138 |
+
value: 0.504279685613151
|
139 |
+
name: Pearson Dot
|
140 |
+
- type: spearman_dot
|
141 |
+
value: 0.598648155615724
|
142 |
+
name: Spearman Dot
|
143 |
+
- type: pearson_max
|
144 |
+
value: 0.522744495080616
|
145 |
+
name: Pearson Max
|
146 |
+
- type: spearman_max
|
147 |
+
value: 0.598648155615724
|
148 |
+
name: Spearman Max
|
149 |
+
---
|
150 |
+
|
151 |
+
# SentenceTransformer based on cointegrated/LaBSE-en-ru
|
152 |
+
|
153 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [cointegrated/LaBSE-en-ru](https://huggingface.co/cointegrated/LaBSE-en-ru). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
154 |
+
|
155 |
+
## Model Details
|
156 |
+
|
157 |
+
### Model Description
|
158 |
+
- **Model Type:** Sentence Transformer
|
159 |
+
- **Base model:** [cointegrated/LaBSE-en-ru](https://huggingface.co/cointegrated/LaBSE-en-ru) <!-- at revision cf0714e606d4af551e14ad69a7929cd6b0da7f7e -->
|
160 |
+
- **Maximum Sequence Length:** 512 tokens
|
161 |
+
- **Output Dimensionality:** 768 tokens
|
162 |
+
- **Similarity Function:** Cosine Similarity
|
163 |
+
<!-- - **Training Dataset:** Unknown -->
|
164 |
+
<!-- - **Language:** Unknown -->
|
165 |
+
<!-- - **License:** Unknown -->
|
166 |
+
|
167 |
+
### Model Sources
|
168 |
+
|
169 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
170 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
171 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
172 |
+
|
173 |
+
### Full Model Architecture
|
174 |
+
|
175 |
+
```
|
176 |
+
SentenceTransformer(
|
177 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
178 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
179 |
+
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
|
180 |
+
(3): Normalize()
|
181 |
+
)
|
182 |
+
```
|
183 |
+
|
184 |
+
## Usage
|
185 |
+
|
186 |
+
### Direct Usage (Sentence Transformers)
|
187 |
+
|
188 |
+
First install the Sentence Transformers library:
|
189 |
+
|
190 |
+
```bash
|
191 |
+
pip install -U sentence-transformers
|
192 |
+
```
|
193 |
+
|
194 |
+
Then you can load this model and run inference.
|
195 |
+
```python
|
196 |
+
from sentence_transformers import SentenceTransformer
|
197 |
+
|
198 |
+
# Download from the 🤗 Hub
|
199 |
+
model = SentenceTransformer("whitemouse84/LaBSE-en-ru-distilled-each-third-layer")
|
200 |
+
# Run inference
|
201 |
+
sentences = [
|
202 |
+
'See Name section.',
|
203 |
+
'Ms. Packard is the voice of the female blood elf in the video game World of Warcraft.',
|
204 |
+
'Yeah, people who might not be hungry.',
|
205 |
+
]
|
206 |
+
embeddings = model.encode(sentences)
|
207 |
+
print(embeddings.shape)
|
208 |
+
# [3, 768]
|
209 |
+
|
210 |
+
# Get the similarity scores for the embeddings
|
211 |
+
similarities = model.similarity(embeddings, embeddings)
|
212 |
+
print(similarities.shape)
|
213 |
+
# [3, 3]
|
214 |
+
```
|
215 |
+
|
216 |
+
<!--
|
217 |
+
### Direct Usage (Transformers)
|
218 |
+
|
219 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
220 |
+
|
221 |
+
</details>
|
222 |
+
-->
|
223 |
+
|
224 |
+
<!--
|
225 |
+
### Downstream Usage (Sentence Transformers)
|
226 |
+
|
227 |
+
You can finetune this model on your own dataset.
|
228 |
+
|
229 |
+
<details><summary>Click to expand</summary>
|
230 |
+
|
231 |
+
</details>
|
232 |
+
-->
|
233 |
+
|
234 |
+
<!--
|
235 |
+
### Out-of-Scope Use
|
236 |
+
|
237 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
238 |
+
-->
|
239 |
+
|
240 |
+
## Evaluation
|
241 |
+
|
242 |
+
### Metrics
|
243 |
+
|
244 |
+
#### Semantic Similarity
|
245 |
+
* Dataset: `sts-dev`
|
246 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
247 |
+
|
248 |
+
| Metric | Value |
|
249 |
+
|:--------------------|:-----------|
|
250 |
+
| pearson_cosine | 0.5305 |
|
251 |
+
| **spearman_cosine** | **0.6347** |
|
252 |
+
| pearson_manhattan | 0.5553 |
|
253 |
+
| spearman_manhattan | 0.6389 |
|
254 |
+
| pearson_euclidean | 0.55 |
|
255 |
+
| spearman_euclidean | 0.6347 |
|
256 |
+
| pearson_dot | 0.5305 |
|
257 |
+
| spearman_dot | 0.6347 |
|
258 |
+
| pearson_max | 0.5553 |
|
259 |
+
| spearman_max | 0.6389 |
|
260 |
+
|
261 |
+
#### Knowledge Distillation
|
262 |
+
|
263 |
+
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
|
264 |
+
|
265 |
+
| Metric | Value |
|
266 |
+
|:-----------------|:------------|
|
267 |
+
| **negative_mse** | **-0.0063** |
|
268 |
+
|
269 |
+
#### Semantic Similarity
|
270 |
+
* Dataset: `sts-test`
|
271 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
272 |
+
|
273 |
+
| Metric | Value |
|
274 |
+
|:--------------------|:-----------|
|
275 |
+
| pearson_cosine | 0.5043 |
|
276 |
+
| **spearman_cosine** | **0.5986** |
|
277 |
+
| pearson_manhattan | 0.5227 |
|
278 |
+
| spearman_manhattan | 0.5984 |
|
279 |
+
| pearson_euclidean | 0.5227 |
|
280 |
+
| spearman_euclidean | 0.5986 |
|
281 |
+
| pearson_dot | 0.5043 |
|
282 |
+
| spearman_dot | 0.5986 |
|
283 |
+
| pearson_max | 0.5227 |
|
284 |
+
| spearman_max | 0.5986 |
|
285 |
+
|
286 |
+
<!--
|
287 |
+
## Bias, Risks and Limitations
|
288 |
+
|
289 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
290 |
+
-->
|
291 |
+
|
292 |
+
<!--
|
293 |
+
### Recommendations
|
294 |
+
|
295 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
296 |
+
-->
|
297 |
+
|
298 |
+
## Training Details
|
299 |
+
|
300 |
+
### Training Dataset
|
301 |
+
|
302 |
+
#### Unnamed Dataset
|
303 |
+
|
304 |
+
|
305 |
+
* Size: 10,975,066 training samples
|
306 |
+
* Columns: <code>sentence</code> and <code>label</code>
|
307 |
+
* Approximate statistics based on the first 1000 samples:
|
308 |
+
| | sentence | label |
|
309 |
+
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|
|
310 |
+
| type | string | list |
|
311 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 26.93 tokens</li><li>max: 139 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
312 |
+
* Samples:
|
313 |
+
| sentence | label |
|
314 |
+
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------|
|
315 |
+
| <code>It is based on the Java Persistence API (JPA), but it does not strictly follow the JSR 338 Specification, as it implements different design patterns and technologies.</code> | <code>[-0.012331949546933174, -0.04570527374744415, -0.024963658303022385, -0.03620213270187378, 0.022556383162736893, ...]</code> |
|
316 |
+
| <code>Покупаем вторичное сырье в Каунасе (Переработка вторичного сырья) - Алфенас АНД КО, ЗАО на Bizorg.</code> | <code>[-0.07498518377542496, -0.01913534104824066, -0.01797042042016983, 0.048263177275657654, -0.00016611881437711418, ...]</code> |
|
317 |
+
| <code>At the Equal Justice Conference ( EJC ) held in March 2001 in San Diego , LSC and the Project for the Future of Equal Justice held the second Case Management Software pre-conference .</code> | <code>[0.03870972990989685, -0.0638347640633583, -0.01696585863828659, -0.043612319976091385, -0.048241738229990005, ...]</code> |
|
318 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
|
319 |
+
|
320 |
+
### Evaluation Dataset
|
321 |
+
|
322 |
+
#### Unnamed Dataset
|
323 |
+
|
324 |
+
|
325 |
+
* Size: 10,000 evaluation samples
|
326 |
+
* Columns: <code>sentence</code> and <code>label</code>
|
327 |
+
* Approximate statistics based on the first 1000 samples:
|
328 |
+
| | sentence | label |
|
329 |
+
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|
|
330 |
+
| type | string | list |
|
331 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 24.18 tokens</li><li>max: 111 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
332 |
+
* Samples:
|
333 |
+
| sentence | label |
|
334 |
+
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------|
|
335 |
+
| <code>The Canadian Canoe Museum is a museum dedicated to canoes located in Peterborough, Ontario, Canada.</code> | <code>[-0.05444105342030525, -0.03650881350040436, -0.041163671761751175, -0.010616903193295002, -0.04094529151916504, ...]</code> |
|
336 |
+
| <code>И мне нравилось, что я одновременно зарабатываю и смотрю бои».</code> | <code>[-0.03404555842280388, 0.028203096240758896, -0.056121889501810074, -0.0591997392475605, -0.05523117259144783, ...]</code> |
|
337 |
+
| <code>Ну, а на следующий день, разумеется, Президент Кеннеди объявил блокаду Кубы, и наши корабли остановили у кубинских берегов направлявшийся на Кубу российский корабль, и у него на борту нашли ракеты.</code> | <code>[-0.008193841204047203, 0.00694894278421998, -0.03027420863509178, -0.03290146216750145, 0.01425305474549532, ...]</code> |
|
338 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
|
339 |
+
|
340 |
+
### Training Hyperparameters
|
341 |
+
#### Non-Default Hyperparameters
|
342 |
+
|
343 |
+
- `eval_strategy`: steps
|
344 |
+
- `per_device_train_batch_size`: 64
|
345 |
+
- `per_device_eval_batch_size`: 64
|
346 |
+
- `learning_rate`: 0.0001
|
347 |
+
- `num_train_epochs`: 1
|
348 |
+
- `warmup_ratio`: 0.1
|
349 |
+
- `fp16`: True
|
350 |
+
- `load_best_model_at_end`: True
|
351 |
+
|
352 |
+
#### All Hyperparameters
|
353 |
+
<details><summary>Click to expand</summary>
|
354 |
+
|
355 |
+
- `overwrite_output_dir`: False
|
356 |
+
- `do_predict`: False
|
357 |
+
- `eval_strategy`: steps
|
358 |
+
- `prediction_loss_only`: True
|
359 |
+
- `per_device_train_batch_size`: 64
|
360 |
+
- `per_device_eval_batch_size`: 64
|
361 |
+
- `per_gpu_train_batch_size`: None
|
362 |
+
- `per_gpu_eval_batch_size`: None
|
363 |
+
- `gradient_accumulation_steps`: 1
|
364 |
+
- `eval_accumulation_steps`: None
|
365 |
+
- `torch_empty_cache_steps`: None
|
366 |
+
- `learning_rate`: 0.0001
|
367 |
+
- `weight_decay`: 0.0
|
368 |
+
- `adam_beta1`: 0.9
|
369 |
+
- `adam_beta2`: 0.999
|
370 |
+
- `adam_epsilon`: 1e-08
|
371 |
+
- `max_grad_norm`: 1.0
|
372 |
+
- `num_train_epochs`: 1
|
373 |
+
- `max_steps`: -1
|
374 |
+
- `lr_scheduler_type`: linear
|
375 |
+
- `lr_scheduler_kwargs`: {}
|
376 |
+
- `warmup_ratio`: 0.1
|
377 |
+
- `warmup_steps`: 0
|
378 |
+
- `log_level`: passive
|
379 |
+
- `log_level_replica`: warning
|
380 |
+
- `log_on_each_node`: True
|
381 |
+
- `logging_nan_inf_filter`: True
|
382 |
+
- `save_safetensors`: True
|
383 |
+
- `save_on_each_node`: False
|
384 |
+
- `save_only_model`: False
|
385 |
+
- `restore_callback_states_from_checkpoint`: False
|
386 |
+
- `no_cuda`: False
|
387 |
+
- `use_cpu`: False
|
388 |
+
- `use_mps_device`: False
|
389 |
+
- `seed`: 42
|
390 |
+
- `data_seed`: None
|
391 |
+
- `jit_mode_eval`: False
|
392 |
+
- `use_ipex`: False
|
393 |
+
- `bf16`: False
|
394 |
+
- `fp16`: True
|
395 |
+
- `fp16_opt_level`: O1
|
396 |
+
- `half_precision_backend`: auto
|
397 |
+
- `bf16_full_eval`: False
|
398 |
+
- `fp16_full_eval`: False
|
399 |
+
- `tf32`: None
|
400 |
+
- `local_rank`: 0
|
401 |
+
- `ddp_backend`: None
|
402 |
+
- `tpu_num_cores`: None
|
403 |
+
- `tpu_metrics_debug`: False
|
404 |
+
- `debug`: []
|
405 |
+
- `dataloader_drop_last`: False
|
406 |
+
- `dataloader_num_workers`: 0
|
407 |
+
- `dataloader_prefetch_factor`: None
|
408 |
+
- `past_index`: -1
|
409 |
+
- `disable_tqdm`: False
|
410 |
+
- `remove_unused_columns`: True
|
411 |
+
- `label_names`: None
|
412 |
+
- `load_best_model_at_end`: True
|
413 |
+
- `ignore_data_skip`: False
|
414 |
+
- `fsdp`: []
|
415 |
+
- `fsdp_min_num_params`: 0
|
416 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
417 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
418 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
419 |
+
- `deepspeed`: None
|
420 |
+
- `label_smoothing_factor`: 0.0
|
421 |
+
- `optim`: adamw_torch
|
422 |
+
- `optim_args`: None
|
423 |
+
- `adafactor`: False
|
424 |
+
- `group_by_length`: False
|
425 |
+
- `length_column_name`: length
|
426 |
+
- `ddp_find_unused_parameters`: None
|
427 |
+
- `ddp_bucket_cap_mb`: None
|
428 |
+
- `ddp_broadcast_buffers`: False
|
429 |
+
- `dataloader_pin_memory`: True
|
430 |
+
- `dataloader_persistent_workers`: False
|
431 |
+
- `skip_memory_metrics`: True
|
432 |
+
- `use_legacy_prediction_loop`: False
|
433 |
+
- `push_to_hub`: False
|
434 |
+
- `resume_from_checkpoint`: None
|
435 |
+
- `hub_model_id`: None
|
436 |
+
- `hub_strategy`: every_save
|
437 |
+
- `hub_private_repo`: False
|
438 |
+
- `hub_always_push`: False
|
439 |
+
- `gradient_checkpointing`: False
|
440 |
+
- `gradient_checkpointing_kwargs`: None
|
441 |
+
- `include_inputs_for_metrics`: False
|
442 |
+
- `eval_do_concat_batches`: True
|
443 |
+
- `fp16_backend`: auto
|
444 |
+
- `push_to_hub_model_id`: None
|
445 |
+
- `push_to_hub_organization`: None
|
446 |
+
- `mp_parameters`:
|
447 |
+
- `auto_find_batch_size`: False
|
448 |
+
- `full_determinism`: False
|
449 |
+
- `torchdynamo`: None
|
450 |
+
- `ray_scope`: last
|
451 |
+
- `ddp_timeout`: 1800
|
452 |
+
- `torch_compile`: False
|
453 |
+
- `torch_compile_backend`: None
|
454 |
+
- `torch_compile_mode`: None
|
455 |
+
- `dispatch_batches`: None
|
456 |
+
- `split_batches`: None
|
457 |
+
- `include_tokens_per_second`: False
|
458 |
+
- `include_num_input_tokens_seen`: False
|
459 |
+
- `neftune_noise_alpha`: None
|
460 |
+
- `optim_target_modules`: None
|
461 |
+
- `batch_eval_metrics`: False
|
462 |
+
- `eval_on_start`: False
|
463 |
+
- `eval_use_gather_object`: False
|
464 |
+
- `batch_sampler`: batch_sampler
|
465 |
+
- `multi_dataset_batch_sampler`: proportional
|
466 |
+
|
467 |
+
</details>
|
468 |
+
|
469 |
+
### Training Logs
|
470 |
+
<details><summary>Click to expand</summary>
|
471 |
+
|
472 |
+
| Epoch | Step | Training Loss | loss | negative_mse | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|
473 |
+
|:----------:|:--------:|:-------------:|:----------:|:------------:|:-----------------------:|:------------------------:|
|
474 |
+
| 0 | 0 | - | - | -0.2381 | 0.4206 | - |
|
475 |
+
| 0.0058 | 1000 | 0.0014 | - | - | - | - |
|
476 |
+
| 0.0117 | 2000 | 0.0009 | - | - | - | - |
|
477 |
+
| 0.0175 | 3000 | 0.0007 | - | - | - | - |
|
478 |
+
| 0.0233 | 4000 | 0.0006 | - | - | - | - |
|
479 |
+
| **0.0292** | **5000** | **0.0005** | **0.0004** | **-0.0363** | **0.6393** | **-** |
|
480 |
+
| 0.0350 | 6000 | 0.0004 | - | - | - | - |
|
481 |
+
| 0.0408 | 7000 | 0.0004 | - | - | - | - |
|
482 |
+
| 0.0467 | 8000 | 0.0003 | - | - | - | - |
|
483 |
+
| 0.0525 | 9000 | 0.0003 | - | - | - | - |
|
484 |
+
| 0.0583 | 10000 | 0.0003 | 0.0002 | -0.0207 | 0.6350 | - |
|
485 |
+
| 0.0641 | 11000 | 0.0003 | - | - | - | - |
|
486 |
+
| 0.0700 | 12000 | 0.0003 | - | - | - | - |
|
487 |
+
| 0.0758 | 13000 | 0.0002 | - | - | - | - |
|
488 |
+
| 0.0816 | 14000 | 0.0002 | - | - | - | - |
|
489 |
+
| 0.0875 | 15000 | 0.0002 | 0.0002 | -0.0157 | 0.6328 | - |
|
490 |
+
| 0.0933 | 16000 | 0.0002 | - | - | - | - |
|
491 |
+
| 0.0991 | 17000 | 0.0002 | - | - | - | - |
|
492 |
+
| 0.1050 | 18000 | 0.0002 | - | - | - | - |
|
493 |
+
| 0.1108 | 19000 | 0.0002 | - | - | - | - |
|
494 |
+
| 0.1166 | 20000 | 0.0002 | 0.0001 | -0.0132 | 0.6317 | - |
|
495 |
+
| 0.1225 | 21000 | 0.0002 | - | - | - | - |
|
496 |
+
| 0.1283 | 22000 | 0.0002 | - | - | - | - |
|
497 |
+
| 0.1341 | 23000 | 0.0002 | - | - | - | - |
|
498 |
+
| 0.1400 | 24000 | 0.0002 | - | - | - | - |
|
499 |
+
| 0.1458 | 25000 | 0.0002 | 0.0001 | -0.0118 | 0.6251 | - |
|
500 |
+
| 0.1516 | 26000 | 0.0002 | - | - | - | - |
|
501 |
+
| 0.1574 | 27000 | 0.0002 | - | - | - | - |
|
502 |
+
| 0.1633 | 28000 | 0.0002 | - | - | - | - |
|
503 |
+
| 0.1691 | 29000 | 0.0002 | - | - | - | - |
|
504 |
+
| 0.1749 | 30000 | 0.0002 | 0.0001 | -0.0109 | 0.6304 | - |
|
505 |
+
| 0.1808 | 31000 | 0.0002 | - | - | - | - |
|
506 |
+
| 0.1866 | 32000 | 0.0002 | - | - | - | - |
|
507 |
+
| 0.1924 | 33000 | 0.0002 | - | - | - | - |
|
508 |
+
| 0.1983 | 34000 | 0.0001 | - | - | - | - |
|
509 |
+
| 0.2041 | 35000 | 0.0001 | 0.0001 | -0.0102 | 0.6280 | - |
|
510 |
+
| 0.2099 | 36000 | 0.0001 | - | - | - | - |
|
511 |
+
| 0.2158 | 37000 | 0.0001 | - | - | - | - |
|
512 |
+
| 0.2216 | 38000 | 0.0001 | - | - | - | - |
|
513 |
+
| 0.2274 | 39000 | 0.0001 | - | - | - | - |
|
514 |
+
| 0.2333 | 40000 | 0.0001 | 0.0001 | -0.0098 | 0.6272 | - |
|
515 |
+
| 0.2391 | 41000 | 0.0001 | - | - | - | - |
|
516 |
+
| 0.2449 | 42000 | 0.0001 | - | - | - | - |
|
517 |
+
| 0.2507 | 43000 | 0.0001 | - | - | - | - |
|
518 |
+
| 0.2566 | 44000 | 0.0001 | - | - | - | - |
|
519 |
+
| 0.2624 | 45000 | 0.0001 | 0.0001 | -0.0093 | 0.6378 | - |
|
520 |
+
| 0.2682 | 46000 | 0.0001 | - | - | - | - |
|
521 |
+
| 0.2741 | 47000 | 0.0001 | - | - | - | - |
|
522 |
+
| 0.2799 | 48000 | 0.0001 | - | - | - | - |
|
523 |
+
| 0.2857 | 49000 | 0.0001 | - | - | - | - |
|
524 |
+
| 0.2916 | 50000 | 0.0001 | 0.0001 | -0.0089 | 0.6325 | - |
|
525 |
+
| 0.2974 | 51000 | 0.0001 | - | - | - | - |
|
526 |
+
| 0.3032 | 52000 | 0.0001 | - | - | - | - |
|
527 |
+
| 0.3091 | 53000 | 0.0001 | - | - | - | - |
|
528 |
+
| 0.3149 | 54000 | 0.0001 | - | - | - | - |
|
529 |
+
| 0.3207 | 55000 | 0.0001 | 0.0001 | -0.0087 | 0.6328 | - |
|
530 |
+
| 0.3266 | 56000 | 0.0001 | - | - | - | - |
|
531 |
+
| 0.3324 | 57000 | 0.0001 | - | - | - | - |
|
532 |
+
| 0.3382 | 58000 | 0.0001 | - | - | - | - |
|
533 |
+
| 0.3441 | 59000 | 0.0001 | - | - | - | - |
|
534 |
+
| 0.3499 | 60000 | 0.0001 | 0.0001 | -0.0085 | 0.6357 | - |
|
535 |
+
| 0.3557 | 61000 | 0.0001 | - | - | - | - |
|
536 |
+
| 0.3615 | 62000 | 0.0001 | - | - | - | - |
|
537 |
+
| 0.3674 | 63000 | 0.0001 | - | - | - | - |
|
538 |
+
| 0.3732 | 64000 | 0.0001 | - | - | - | - |
|
539 |
+
| 0.3790 | 65000 | 0.0001 | 0.0001 | -0.0083 | 0.6366 | - |
|
540 |
+
| 0.3849 | 66000 | 0.0001 | - | - | - | - |
|
541 |
+
| 0.3907 | 67000 | 0.0001 | - | - | - | - |
|
542 |
+
| 0.3965 | 68000 | 0.0001 | - | - | - | - |
|
543 |
+
| 0.4024 | 69000 | 0.0001 | - | - | - | - |
|
544 |
+
| 0.4082 | 70000 | 0.0001 | 0.0001 | -0.0080 | 0.6325 | - |
|
545 |
+
| 0.4140 | 71000 | 0.0001 | - | - | - | - |
|
546 |
+
| 0.4199 | 72000 | 0.0001 | - | - | - | - |
|
547 |
+
| 0.4257 | 73000 | 0.0001 | - | - | - | - |
|
548 |
+
| 0.4315 | 74000 | 0.0001 | - | - | - | - |
|
549 |
+
| 0.4374 | 75000 | 0.0001 | 0.0001 | -0.0078 | 0.6351 | - |
|
550 |
+
| 0.4432 | 76000 | 0.0001 | - | - | - | - |
|
551 |
+
| 0.4490 | 77000 | 0.0001 | - | - | - | - |
|
552 |
+
| 0.4548 | 78000 | 0.0001 | - | - | - | - |
|
553 |
+
| 0.4607 | 79000 | 0.0001 | - | - | - | - |
|
554 |
+
| 0.4665 | 80000 | 0.0001 | 0.0001 | -0.0077 | 0.6323 | - |
|
555 |
+
| 0.4723 | 81000 | 0.0001 | - | - | - | - |
|
556 |
+
| 0.4782 | 82000 | 0.0001 | - | - | - | - |
|
557 |
+
| 0.4840 | 83000 | 0.0001 | - | - | - | - |
|
558 |
+
| 0.4898 | 84000 | 0.0001 | - | - | - | - |
|
559 |
+
| 0.4957 | 85000 | 0.0001 | 0.0001 | -0.0076 | 0.6316 | - |
|
560 |
+
| 0.5015 | 86000 | 0.0001 | - | - | - | - |
|
561 |
+
| 0.5073 | 87000 | 0.0001 | - | - | - | - |
|
562 |
+
| 0.5132 | 88000 | 0.0001 | - | - | - | - |
|
563 |
+
| 0.5190 | 89000 | 0.0001 | - | - | - | - |
|
564 |
+
| 0.5248 | 90000 | 0.0001 | 0.0001 | -0.0074 | 0.6306 | - |
|
565 |
+
| 0.5307 | 91000 | 0.0001 | - | - | - | - |
|
566 |
+
| 0.5365 | 92000 | 0.0001 | - | - | - | - |
|
567 |
+
| 0.5423 | 93000 | 0.0001 | - | - | - | - |
|
568 |
+
| 0.5481 | 94000 | 0.0001 | - | - | - | - |
|
569 |
+
| 0.5540 | 95000 | 0.0001 | 0.0001 | -0.0073 | 0.6305 | - |
|
570 |
+
| 0.5598 | 96000 | 0.0001 | - | - | - | - |
|
571 |
+
| 0.5656 | 97000 | 0.0001 | - | - | - | - |
|
572 |
+
| 0.5715 | 98000 | 0.0001 | - | - | - | - |
|
573 |
+
| 0.5773 | 99000 | 0.0001 | - | - | - | - |
|
574 |
+
| 0.5831 | 100000 | 0.0001 | 0.0001 | -0.0072 | 0.6333 | - |
|
575 |
+
| 0.5890 | 101000 | 0.0001 | - | - | - | - |
|
576 |
+
| 0.5948 | 102000 | 0.0001 | - | - | - | - |
|
577 |
+
| 0.6006 | 103000 | 0.0001 | - | - | - | - |
|
578 |
+
| 0.6065 | 104000 | 0.0001 | - | - | - | - |
|
579 |
+
| 0.6123 | 105000 | 0.0001 | 0.0001 | -0.0071 | 0.6351 | - |
|
580 |
+
| 0.6181 | 106000 | 0.0001 | - | - | - | - |
|
581 |
+
| 0.6240 | 107000 | 0.0001 | - | - | - | - |
|
582 |
+
| 0.6298 | 108000 | 0.0001 | - | - | - | - |
|
583 |
+
| 0.6356 | 109000 | 0.0001 | - | - | - | - |
|
584 |
+
| 0.6415 | 110000 | 0.0001 | 0.0001 | -0.0070 | 0.6330 | - |
|
585 |
+
| 0.6473 | 111000 | 0.0001 | - | - | - | - |
|
586 |
+
| 0.6531 | 112000 | 0.0001 | - | - | - | - |
|
587 |
+
| 0.6589 | 113000 | 0.0001 | - | - | - | - |
|
588 |
+
| 0.6648 | 114000 | 0.0001 | - | - | - | - |
|
589 |
+
| 0.6706 | 115000 | 0.0001 | 0.0001 | -0.0070 | 0.6336 | - |
|
590 |
+
| 0.6764 | 116000 | 0.0001 | - | - | - | - |
|
591 |
+
| 0.6823 | 117000 | 0.0001 | - | - | - | - |
|
592 |
+
| 0.6881 | 118000 | 0.0001 | - | - | - | - |
|
593 |
+
| 0.6939 | 119000 | 0.0001 | - | - | - | - |
|
594 |
+
| 0.6998 | 120000 | 0.0001 | 0.0001 | -0.0069 | 0.6305 | - |
|
595 |
+
| 0.7056 | 121000 | 0.0001 | - | - | - | - |
|
596 |
+
| 0.7114 | 122000 | 0.0001 | - | - | - | - |
|
597 |
+
| 0.7173 | 123000 | 0.0001 | - | - | - | - |
|
598 |
+
| 0.7231 | 124000 | 0.0001 | - | - | - | - |
|
599 |
+
| 0.7289 | 125000 | 0.0001 | 0.0001 | -0.0068 | 0.6362 | - |
|
600 |
+
| 0.7348 | 126000 | 0.0001 | - | - | - | - |
|
601 |
+
| 0.7406 | 127000 | 0.0001 | - | - | - | - |
|
602 |
+
| 0.7464 | 128000 | 0.0001 | - | - | - | - |
|
603 |
+
| 0.7522 | 129000 | 0.0001 | - | - | - | - |
|
604 |
+
| 0.7581 | 130000 | 0.0001 | 0.0001 | -0.0067 | 0.6340 | - |
|
605 |
+
| 0.7639 | 131000 | 0.0001 | - | - | - | - |
|
606 |
+
| 0.7697 | 132000 | 0.0001 | - | - | - | - |
|
607 |
+
| 0.7756 | 133000 | 0.0001 | - | - | - | - |
|
608 |
+
| 0.7814 | 134000 | 0.0001 | - | - | - | - |
|
609 |
+
| 0.7872 | 135000 | 0.0001 | 0.0001 | -0.0067 | 0.6365 | - |
|
610 |
+
| 0.7931 | 136000 | 0.0001 | - | - | - | - |
|
611 |
+
| 0.7989 | 137000 | 0.0001 | - | - | - | - |
|
612 |
+
| 0.8047 | 138000 | 0.0001 | - | - | - | - |
|
613 |
+
| 0.8106 | 139000 | 0.0001 | - | - | - | - |
|
614 |
+
| 0.8164 | 140000 | 0.0001 | 0.0001 | -0.0066 | 0.6339 | - |
|
615 |
+
| 0.8222 | 141000 | 0.0001 | - | - | - | - |
|
616 |
+
| 0.8281 | 142000 | 0.0001 | - | - | - | - |
|
617 |
+
| 0.8339 | 143000 | 0.0001 | - | - | - | - |
|
618 |
+
| 0.8397 | 144000 | 0.0001 | - | - | - | - |
|
619 |
+
| 0.8456 | 145000 | 0.0001 | 0.0001 | -0.0066 | 0.6352 | - |
|
620 |
+
| 0.8514 | 146000 | 0.0001 | - | - | - | - |
|
621 |
+
| 0.8572 | 147000 | 0.0001 | - | - | - | - |
|
622 |
+
| 0.8630 | 148000 | 0.0001 | - | - | - | - |
|
623 |
+
| 0.8689 | 149000 | 0.0001 | - | - | - | - |
|
624 |
+
| 0.8747 | 150000 | 0.0001 | 0.0001 | -0.0065 | 0.6357 | - |
|
625 |
+
| 0.8805 | 151000 | 0.0001 | - | - | - | - |
|
626 |
+
| 0.8864 | 152000 | 0.0001 | - | - | - | - |
|
627 |
+
| 0.8922 | 153000 | 0.0001 | - | - | - | - |
|
628 |
+
| 0.8980 | 154000 | 0.0001 | - | - | - | - |
|
629 |
+
| 0.9039 | 155000 | 0.0001 | 0.0001 | -0.0065 | 0.6336 | - |
|
630 |
+
| 0.9097 | 156000 | 0.0001 | - | - | - | - |
|
631 |
+
| 0.9155 | 157000 | 0.0001 | - | - | - | - |
|
632 |
+
| 0.9214 | 158000 | 0.0001 | - | - | - | - |
|
633 |
+
| 0.9272 | 159000 | 0.0001 | - | - | - | - |
|
634 |
+
| 0.9330 | 160000 | 0.0001 | 0.0001 | -0.0064 | 0.6334 | - |
|
635 |
+
| 0.9389 | 161000 | 0.0001 | - | - | - | - |
|
636 |
+
| 0.9447 | 162000 | 0.0001 | - | - | - | - |
|
637 |
+
| 0.9505 | 163000 | 0.0001 | - | - | - | - |
|
638 |
+
| 0.9563 | 164000 | 0.0001 | - | - | - | - |
|
639 |
+
| 0.9622 | 165000 | 0.0001 | 0.0001 | -0.0064 | 0.6337 | - |
|
640 |
+
| 0.9680 | 166000 | 0.0001 | - | - | - | - |
|
641 |
+
| 0.9738 | 167000 | 0.0001 | - | - | - | - |
|
642 |
+
| 0.9797 | 168000 | 0.0001 | - | - | - | - |
|
643 |
+
| 0.9855 | 169000 | 0.0001 | - | - | - | - |
|
644 |
+
| 0.9913 | 170000 | 0.0001 | 0.0001 | -0.0063 | 0.6347 | - |
|
645 |
+
| 0.9972 | 171000 | 0.0001 | - | - | - | - |
|
646 |
+
| 1.0 | 171486 | - | - | - | - | 0.5986 |
|
647 |
+
|
648 |
+
* The bold row denotes the saved checkpoint.
|
649 |
+
</details>
|
650 |
+
|
651 |
+
### Framework Versions
|
652 |
+
- Python: 3.10.14
|
653 |
+
- Sentence Transformers: 3.0.1
|
654 |
+
- Transformers: 4.44.0
|
655 |
+
- PyTorch: 2.4.0
|
656 |
+
- Accelerate: 0.33.0
|
657 |
+
- Datasets: 2.20.0
|
658 |
+
- Tokenizers: 0.19.1
|
659 |
+
|
660 |
+
## Citation
|
661 |
+
|
662 |
+
### BibTeX
|
663 |
+
|
664 |
+
#### Sentence Transformers
|
665 |
+
```bibtex
|
666 |
+
@inproceedings{reimers-2019-sentence-bert,
|
667 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
668 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
669 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
670 |
+
month = "11",
|
671 |
+
year = "2019",
|
672 |
+
publisher = "Association for Computational Linguistics",
|
673 |
+
url = "https://arxiv.org/abs/1908.10084",
|
674 |
+
}
|
675 |
+
```
|
676 |
+
|
677 |
+
#### MSELoss
|
678 |
+
```bibtex
|
679 |
+
@inproceedings{reimers-2020-multilingual-sentence-bert,
|
680 |
+
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
|
681 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
682 |
+
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
|
683 |
+
month = "11",
|
684 |
+
year = "2020",
|
685 |
+
publisher = "Association for Computational Linguistics",
|
686 |
+
url = "https://arxiv.org/abs/2004.09813",
|
687 |
+
}
|
688 |
+
```
|
689 |
+
|
690 |
+
<!--
|
691 |
+
## Glossary
|
692 |
+
|
693 |
+
*Clearly define terms in order to be accessible across audiences.*
|
694 |
+
-->
|
695 |
+
|
696 |
+
<!--
|
697 |
+
## Model Card Authors
|
698 |
+
|
699 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
700 |
+
-->
|
701 |
+
|
702 |
+
<!--
|
703 |
+
## Model Card Contact
|
704 |
+
|
705 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
706 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "output/model-distillation-reduction-2024-08-19_09-02-08/final",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"directionality": "bidi",
|
9 |
+
"gradient_checkpointing": false,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-12,
|
16 |
+
"max_position_embeddings": 512,
|
17 |
+
"model_type": "bert",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 5,
|
20 |
+
"pad_token_id": 0,
|
21 |
+
"pooler_fc_size": 768,
|
22 |
+
"pooler_num_attention_heads": 12,
|
23 |
+
"pooler_num_fc_layers": 3,
|
24 |
+
"pooler_size_per_head": 128,
|
25 |
+
"pooler_type": "first_token_transform",
|
26 |
+
"position_embedding_type": "absolute",
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.44.0",
|
29 |
+
"type_vocab_size": 2,
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 55083
|
32 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.44.0",
|
5 |
+
"pytorch": "2.4.0"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:27a713701cd3b6060274d01cb82c813d64e79c373c41511fad1f206e1d27f7f8
|
3 |
+
size 314929664
|
modules.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Dense",
|
18 |
+
"type": "sentence_transformers.models.Dense"
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"idx": 3,
|
22 |
+
"name": "3",
|
23 |
+
"path": "3_Normalize",
|
24 |
+
"type": "sentence_transformers.models.Normalize"
|
25 |
+
}
|
26 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": false,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_length": 512,
|
50 |
+
"model_max_length": 512,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "[SEP]",
|
57 |
+
"stride": 0,
|
58 |
+
"strip_accents": null,
|
59 |
+
"tokenize_chinese_chars": true,
|
60 |
+
"tokenizer_class": "BertTokenizer",
|
61 |
+
"truncation_side": "right",
|
62 |
+
"truncation_strategy": "longest_first",
|
63 |
+
"unk_token": "[UNK]"
|
64 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|