williamliu
commited on
Commit
•
386ff83
1
Parent(s):
af61b00
Upload chat version of Qilin-Med-VL
Browse files- config.json +38 -0
- pytorch_model-00001-of-00003.bin +3 -0
- pytorch_model-00002-of-00003.bin +3 -0
- pytorch_model-00003-of-00003.bin +3 -0
- pytorch_model.bin.index.json +414 -0
- special_tokens_map.json +24 -0
- tokenizer.model +3 -0
- tokenizer_config.json +35 -0
- trainer_state.json +3316 -0
- training_args.bin +3 -0
- zero_to_fp32.py +578 -0
config.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"LlavaLlamaForCausalLM"
|
4 |
+
],
|
5 |
+
"bos_token_id": 1,
|
6 |
+
"eos_token_id": 2,
|
7 |
+
"freeze_mm_mlp_adapter": false,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 5120,
|
10 |
+
"image_aspect_ratio": "pad",
|
11 |
+
"image_grid_pinpoints": null,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 13824,
|
14 |
+
"max_position_embeddings": 4096,
|
15 |
+
"mm_hidden_size": 1024,
|
16 |
+
"mm_projector_type": "mlp2x_gelu",
|
17 |
+
"mm_use_im_patch_token": false,
|
18 |
+
"mm_use_im_start_end": false,
|
19 |
+
"mm_vision_select_feature": "patch",
|
20 |
+
"mm_vision_select_layer": -2,
|
21 |
+
"mm_vision_tower": "openai/clip-vit-large-patch14-336",
|
22 |
+
"model_type": "llava",
|
23 |
+
"num_attention_heads": 40,
|
24 |
+
"num_hidden_layers": 40,
|
25 |
+
"num_key_value_heads": 40,
|
26 |
+
"pad_token_id": 0,
|
27 |
+
"pretraining_tp": 1,
|
28 |
+
"rms_norm_eps": 1e-05,
|
29 |
+
"rope_scaling": null,
|
30 |
+
"tie_word_embeddings": false,
|
31 |
+
"torch_dtype": "bfloat16",
|
32 |
+
"transformers_version": "4.31.0",
|
33 |
+
"tune_mm_mlp_adapter": false,
|
34 |
+
"use_cache": false,
|
35 |
+
"use_mm_proj": true,
|
36 |
+
"vocab_size": 32000
|
37 |
+
}
|
38 |
+
|
pytorch_model-00001-of-00003.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76ab07d425cb0d30dbfc16158c4634dcbddf3a1a2ffc6f9f4d380604bbecaad8
|
3 |
+
size 9948726510
|
pytorch_model-00002-of-00003.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1aa95282c696b1ecf5c5967234673439e9a5e5dd59da5a87eb14c4308bb5680a
|
3 |
+
size 9904162976
|
pytorch_model-00003-of-00003.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8216e73d270d8934da5caa5778045c6f6f85626adb790717713790d42867afd1
|
3 |
+
size 6241918849
|
pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,414 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 26701028352
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "pytorch_model-00003-of-00003.bin",
|
7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00003.bin",
|
8 |
+
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
16 |
+
"model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
17 |
+
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
18 |
+
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
19 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
20 |
+
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
21 |
+
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
22 |
+
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
23 |
+
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
24 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
25 |
+
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
26 |
+
"model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
27 |
+
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
28 |
+
"model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
29 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
30 |
+
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
31 |
+
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
32 |
+
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
33 |
+
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
34 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
35 |
+
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
36 |
+
"model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
37 |
+
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
38 |
+
"model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
39 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
40 |
+
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
41 |
+
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
42 |
+
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
43 |
+
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
44 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
45 |
+
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
46 |
+
"model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
47 |
+
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
48 |
+
"model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
49 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
50 |
+
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
51 |
+
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
52 |
+
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
53 |
+
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
54 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
55 |
+
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
56 |
+
"model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
57 |
+
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
58 |
+
"model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
59 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
60 |
+
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
61 |
+
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
62 |
+
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
63 |
+
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
64 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
65 |
+
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
66 |
+
"model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
67 |
+
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
68 |
+
"model.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
69 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
70 |
+
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
71 |
+
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
72 |
+
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
73 |
+
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
74 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
75 |
+
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
76 |
+
"model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
77 |
+
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
78 |
+
"model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
79 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
80 |
+
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
81 |
+
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
82 |
+
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
83 |
+
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
84 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
85 |
+
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
86 |
+
"model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
87 |
+
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
88 |
+
"model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
89 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
90 |
+
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
91 |
+
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
92 |
+
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
93 |
+
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
94 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
95 |
+
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
96 |
+
"model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
97 |
+
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
98 |
+
"model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
99 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
100 |
+
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
101 |
+
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
102 |
+
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
103 |
+
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
104 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
105 |
+
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
106 |
+
"model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
107 |
+
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
108 |
+
"model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
109 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
110 |
+
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
111 |
+
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
112 |
+
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
113 |
+
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
114 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
115 |
+
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
116 |
+
"model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
117 |
+
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
118 |
+
"model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
119 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
120 |
+
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
121 |
+
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
122 |
+
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
123 |
+
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
124 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
125 |
+
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
126 |
+
"model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
127 |
+
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
128 |
+
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
129 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
130 |
+
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
131 |
+
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
132 |
+
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
133 |
+
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
134 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
135 |
+
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
136 |
+
"model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
137 |
+
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
138 |
+
"model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
139 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
140 |
+
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
141 |
+
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
142 |
+
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
143 |
+
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
144 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
145 |
+
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
146 |
+
"model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
147 |
+
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
148 |
+
"model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
149 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
150 |
+
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
151 |
+
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
152 |
+
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
153 |
+
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
154 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
155 |
+
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
156 |
+
"model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
157 |
+
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
158 |
+
"model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
159 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
160 |
+
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
161 |
+
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
162 |
+
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
163 |
+
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
164 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
165 |
+
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
166 |
+
"model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
167 |
+
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
168 |
+
"model.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
169 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
170 |
+
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
171 |
+
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
172 |
+
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
173 |
+
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
174 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
175 |
+
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
176 |
+
"model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
177 |
+
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
178 |
+
"model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
179 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
180 |
+
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
181 |
+
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
182 |
+
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
183 |
+
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
184 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
185 |
+
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
186 |
+
"model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
187 |
+
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
188 |
+
"model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
189 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
190 |
+
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
191 |
+
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
192 |
+
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
193 |
+
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
194 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
195 |
+
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
196 |
+
"model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
197 |
+
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
198 |
+
"model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
199 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
200 |
+
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
201 |
+
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
202 |
+
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
203 |
+
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
204 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
205 |
+
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
206 |
+
"model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
207 |
+
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
208 |
+
"model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
209 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
210 |
+
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
211 |
+
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
212 |
+
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
213 |
+
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
214 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
215 |
+
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
216 |
+
"model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
217 |
+
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
218 |
+
"model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
219 |
+
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
220 |
+
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
221 |
+
"model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
222 |
+
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
223 |
+
"model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
224 |
+
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
225 |
+
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
226 |
+
"model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
227 |
+
"model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
228 |
+
"model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
229 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
230 |
+
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
231 |
+
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
232 |
+
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
233 |
+
"model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
234 |
+
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
235 |
+
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
236 |
+
"model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
237 |
+
"model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
238 |
+
"model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
239 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
240 |
+
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
241 |
+
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
242 |
+
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
243 |
+
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
244 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
245 |
+
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
246 |
+
"model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
247 |
+
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
248 |
+
"model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
249 |
+
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
250 |
+
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
251 |
+
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
252 |
+
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
253 |
+
"model.layers.30.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
254 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
255 |
+
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
256 |
+
"model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
257 |
+
"model.layers.30.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
258 |
+
"model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
259 |
+
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
260 |
+
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
261 |
+
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
262 |
+
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
263 |
+
"model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
264 |
+
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
265 |
+
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
266 |
+
"model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
267 |
+
"model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
268 |
+
"model.layers.32.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
269 |
+
"model.layers.32.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
270 |
+
"model.layers.32.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
271 |
+
"model.layers.32.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
272 |
+
"model.layers.32.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
273 |
+
"model.layers.32.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
274 |
+
"model.layers.32.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
275 |
+
"model.layers.32.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
276 |
+
"model.layers.32.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
277 |
+
"model.layers.32.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
278 |
+
"model.layers.33.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
279 |
+
"model.layers.33.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
280 |
+
"model.layers.33.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
281 |
+
"model.layers.33.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
282 |
+
"model.layers.33.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
283 |
+
"model.layers.33.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
284 |
+
"model.layers.33.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
285 |
+
"model.layers.33.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
286 |
+
"model.layers.33.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
287 |
+
"model.layers.33.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
288 |
+
"model.layers.34.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
289 |
+
"model.layers.34.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
290 |
+
"model.layers.34.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
291 |
+
"model.layers.34.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
292 |
+
"model.layers.34.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
293 |
+
"model.layers.34.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
294 |
+
"model.layers.34.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
295 |
+
"model.layers.34.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
296 |
+
"model.layers.34.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
297 |
+
"model.layers.34.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
298 |
+
"model.layers.35.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
299 |
+
"model.layers.35.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
300 |
+
"model.layers.35.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
301 |
+
"model.layers.35.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
302 |
+
"model.layers.35.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
303 |
+
"model.layers.35.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
304 |
+
"model.layers.35.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
305 |
+
"model.layers.35.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
306 |
+
"model.layers.35.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
307 |
+
"model.layers.35.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
308 |
+
"model.layers.36.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
309 |
+
"model.layers.36.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
310 |
+
"model.layers.36.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
311 |
+
"model.layers.36.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
312 |
+
"model.layers.36.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
313 |
+
"model.layers.36.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
314 |
+
"model.layers.36.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
315 |
+
"model.layers.36.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
316 |
+
"model.layers.36.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
317 |
+
"model.layers.36.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
318 |
+
"model.layers.37.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
319 |
+
"model.layers.37.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
320 |
+
"model.layers.37.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
321 |
+
"model.layers.37.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
322 |
+
"model.layers.37.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
323 |
+
"model.layers.37.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
324 |
+
"model.layers.37.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
325 |
+
"model.layers.37.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
326 |
+
"model.layers.37.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
327 |
+
"model.layers.37.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
328 |
+
"model.layers.38.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
329 |
+
"model.layers.38.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
330 |
+
"model.layers.38.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
331 |
+
"model.layers.38.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
332 |
+
"model.layers.38.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
333 |
+
"model.layers.38.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
334 |
+
"model.layers.38.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
335 |
+
"model.layers.38.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
336 |
+
"model.layers.38.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
337 |
+
"model.layers.38.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
338 |
+
"model.layers.39.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
339 |
+
"model.layers.39.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
340 |
+
"model.layers.39.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
341 |
+
"model.layers.39.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
342 |
+
"model.layers.39.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
343 |
+
"model.layers.39.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
344 |
+
"model.layers.39.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
345 |
+
"model.layers.39.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
346 |
+
"model.layers.39.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
347 |
+
"model.layers.39.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
348 |
+
"model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
349 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
350 |
+
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
351 |
+
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
352 |
+
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
353 |
+
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
354 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
355 |
+
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
356 |
+
"model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
357 |
+
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
358 |
+
"model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
359 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
360 |
+
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
361 |
+
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
362 |
+
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
363 |
+
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
364 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
365 |
+
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
366 |
+
"model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
367 |
+
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
368 |
+
"model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
369 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
370 |
+
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
371 |
+
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
372 |
+
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
373 |
+
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
374 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
375 |
+
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
376 |
+
"model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
377 |
+
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
378 |
+
"model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
379 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
380 |
+
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
381 |
+
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
382 |
+
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
383 |
+
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
384 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
385 |
+
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
386 |
+
"model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
387 |
+
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
388 |
+
"model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
389 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
390 |
+
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
391 |
+
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
392 |
+
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
393 |
+
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
394 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
395 |
+
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
396 |
+
"model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
397 |
+
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
398 |
+
"model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
399 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
400 |
+
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
401 |
+
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
402 |
+
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
403 |
+
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
404 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
405 |
+
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
406 |
+
"model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
407 |
+
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
408 |
+
"model.mm_projector.0.bias": "pytorch_model-00003-of-00003.bin",
|
409 |
+
"model.mm_projector.0.weight": "pytorch_model-00003-of-00003.bin",
|
410 |
+
"model.mm_projector.2.bias": "pytorch_model-00003-of-00003.bin",
|
411 |
+
"model.mm_projector.2.weight": "pytorch_model-00003-of-00003.bin",
|
412 |
+
"model.norm.weight": "pytorch_model-00003-of-00003.bin"
|
413 |
+
}
|
414 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<unk>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
tokenizer_config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"bos_token": {
|
5 |
+
"__type": "AddedToken",
|
6 |
+
"content": "<s>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"clean_up_tokenization_spaces": false,
|
13 |
+
"eos_token": {
|
14 |
+
"__type": "AddedToken",
|
15 |
+
"content": "</s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"legacy": false,
|
22 |
+
"model_max_length": 2048,
|
23 |
+
"pad_token": null,
|
24 |
+
"padding_side": "right",
|
25 |
+
"sp_model_kwargs": {},
|
26 |
+
"tokenizer_class": "LlamaTokenizer",
|
27 |
+
"unk_token": {
|
28 |
+
"__type": "AddedToken",
|
29 |
+
"content": "<unk>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false
|
34 |
+
}
|
35 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,3316 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 9.523809523809524,
|
5 |
+
"global_step": 550,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.02,
|
12 |
+
"learning_rate": 1e-05,
|
13 |
+
"loss": 6.5129,
|
14 |
+
"step": 1
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.03,
|
18 |
+
"learning_rate": 2e-05,
|
19 |
+
"loss": 128.5625,
|
20 |
+
"step": 2
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.05,
|
24 |
+
"learning_rate": 1.9983691039261358e-05,
|
25 |
+
"loss": 18.876,
|
26 |
+
"step": 3
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.07,
|
30 |
+
"learning_rate": 1.99348173534855e-05,
|
31 |
+
"loss": 59.1932,
|
32 |
+
"step": 4
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.09,
|
36 |
+
"learning_rate": 1.9853538358476933e-05,
|
37 |
+
"loss": 379.3555,
|
38 |
+
"step": 5
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.1,
|
42 |
+
"learning_rate": 1.9740119169423337e-05,
|
43 |
+
"loss": 4.746,
|
44 |
+
"step": 6
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.12,
|
48 |
+
"learning_rate": 1.9594929736144978e-05,
|
49 |
+
"loss": 18.0314,
|
50 |
+
"step": 7
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.14,
|
54 |
+
"learning_rate": 1.941844363639525e-05,
|
55 |
+
"loss": 38.1211,
|
56 |
+
"step": 8
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.16,
|
60 |
+
"learning_rate": 1.92112365311485e-05,
|
61 |
+
"loss": 1059.6865,
|
62 |
+
"step": 9
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.17,
|
66 |
+
"learning_rate": 1.8973984286913584e-05,
|
67 |
+
"loss": 256.4645,
|
68 |
+
"step": 10
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 0.19,
|
72 |
+
"learning_rate": 1.8707460771197773e-05,
|
73 |
+
"loss": 79.4426,
|
74 |
+
"step": 11
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.21,
|
78 |
+
"learning_rate": 1.8412535328311813e-05,
|
79 |
+
"loss": 451.3965,
|
80 |
+
"step": 12
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.23,
|
84 |
+
"learning_rate": 1.8090169943749477e-05,
|
85 |
+
"loss": 223.16,
|
86 |
+
"step": 13
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.24,
|
90 |
+
"learning_rate": 1.7741416106390828e-05,
|
91 |
+
"loss": 263.6328,
|
92 |
+
"step": 14
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 0.26,
|
96 |
+
"learning_rate": 1.736741137876405e-05,
|
97 |
+
"loss": 27.3438,
|
98 |
+
"step": 15
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 0.28,
|
102 |
+
"learning_rate": 1.696937568655294e-05,
|
103 |
+
"loss": 2.4131,
|
104 |
+
"step": 16
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 0.29,
|
108 |
+
"learning_rate": 1.6548607339452853e-05,
|
109 |
+
"loss": 34.8906,
|
110 |
+
"step": 17
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 0.31,
|
114 |
+
"learning_rate": 1.6106478796354382e-05,
|
115 |
+
"loss": 0.5303,
|
116 |
+
"step": 18
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.33,
|
120 |
+
"learning_rate": 1.5644432188667695e-05,
|
121 |
+
"loss": 53.5654,
|
122 |
+
"step": 19
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.35,
|
126 |
+
"learning_rate": 1.5163974616389621e-05,
|
127 |
+
"loss": 409.5288,
|
128 |
+
"step": 20
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.36,
|
132 |
+
"learning_rate": 1.4666673232256738e-05,
|
133 |
+
"loss": 411.0,
|
134 |
+
"step": 21
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 0.38,
|
138 |
+
"learning_rate": 1.4154150130018867e-05,
|
139 |
+
"loss": 1.3561,
|
140 |
+
"step": 22
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 0.4,
|
144 |
+
"learning_rate": 1.362807705350641e-05,
|
145 |
+
"loss": 222.3225,
|
146 |
+
"step": 23
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 0.42,
|
150 |
+
"learning_rate": 1.3090169943749475e-05,
|
151 |
+
"loss": 74.2911,
|
152 |
+
"step": 24
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 0.43,
|
156 |
+
"learning_rate": 1.2542183341934873e-05,
|
157 |
+
"loss": 86.5093,
|
158 |
+
"step": 25
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.45,
|
162 |
+
"learning_rate": 1.1985904666457455e-05,
|
163 |
+
"loss": 562.082,
|
164 |
+
"step": 26
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.47,
|
168 |
+
"learning_rate": 1.1423148382732854e-05,
|
169 |
+
"loss": 176.8262,
|
170 |
+
"step": 27
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.48,
|
174 |
+
"learning_rate": 1.08557500847884e-05,
|
175 |
+
"loss": 416.7896,
|
176 |
+
"step": 28
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 0.5,
|
180 |
+
"learning_rate": 1.0285560507936962e-05,
|
181 |
+
"loss": 510.0781,
|
182 |
+
"step": 29
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 0.52,
|
186 |
+
"learning_rate": 9.71443949206304e-06,
|
187 |
+
"loss": 133.375,
|
188 |
+
"step": 30
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 0.54,
|
192 |
+
"learning_rate": 9.144249915211605e-06,
|
193 |
+
"loss": 2.4087,
|
194 |
+
"step": 31
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 0.55,
|
198 |
+
"learning_rate": 8.576851617267151e-06,
|
199 |
+
"loss": 55.4609,
|
200 |
+
"step": 32
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.57,
|
204 |
+
"learning_rate": 8.014095333542548e-06,
|
205 |
+
"loss": 217.9531,
|
206 |
+
"step": 33
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.59,
|
210 |
+
"learning_rate": 7.4578166580651335e-06,
|
211 |
+
"loss": 35.3409,
|
212 |
+
"step": 34
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.61,
|
216 |
+
"learning_rate": 6.909830056250527e-06,
|
217 |
+
"loss": 69.0106,
|
218 |
+
"step": 35
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 0.62,
|
222 |
+
"learning_rate": 6.3719229464935915e-06,
|
223 |
+
"loss": 0.0,
|
224 |
+
"step": 36
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 0.64,
|
228 |
+
"learning_rate": 5.845849869981137e-06,
|
229 |
+
"loss": 199.4429,
|
230 |
+
"step": 37
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 0.66,
|
234 |
+
"learning_rate": 5.333326767743263e-06,
|
235 |
+
"loss": 15.3613,
|
236 |
+
"step": 38
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 0.68,
|
240 |
+
"learning_rate": 4.836025383610382e-06,
|
241 |
+
"loss": 88.6268,
|
242 |
+
"step": 39
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 0.69,
|
246 |
+
"learning_rate": 4.355567811332311e-06,
|
247 |
+
"loss": 73.5571,
|
248 |
+
"step": 40
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.71,
|
252 |
+
"learning_rate": 3.893521203645618e-06,
|
253 |
+
"loss": 72.3561,
|
254 |
+
"step": 41
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.73,
|
258 |
+
"learning_rate": 3.4513926605471504e-06,
|
259 |
+
"loss": 8.4178,
|
260 |
+
"step": 42
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 0.74,
|
264 |
+
"learning_rate": 3.0306243134470668e-06,
|
265 |
+
"loss": 20.0303,
|
266 |
+
"step": 43
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 0.76,
|
270 |
+
"learning_rate": 2.6325886212359496e-06,
|
271 |
+
"loss": 2.5128,
|
272 |
+
"step": 44
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 0.78,
|
276 |
+
"learning_rate": 2.2585838936091753e-06,
|
277 |
+
"loss": 7.6924,
|
278 |
+
"step": 45
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 0.8,
|
282 |
+
"learning_rate": 1.9098300562505266e-06,
|
283 |
+
"loss": 73.0826,
|
284 |
+
"step": 46
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 0.81,
|
288 |
+
"learning_rate": 1.587464671688187e-06,
|
289 |
+
"loss": 185.2307,
|
290 |
+
"step": 47
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.83,
|
294 |
+
"learning_rate": 1.2925392288022299e-06,
|
295 |
+
"loss": 120.2432,
|
296 |
+
"step": 48
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.85,
|
300 |
+
"learning_rate": 1.0260157130864178e-06,
|
301 |
+
"loss": 13.2797,
|
302 |
+
"step": 49
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"epoch": 0.87,
|
306 |
+
"learning_rate": 7.887634688515e-07,
|
307 |
+
"loss": 14.5082,
|
308 |
+
"step": 50
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 0.88,
|
312 |
+
"learning_rate": 1.111111111111111e-06,
|
313 |
+
"loss": 0.8499,
|
314 |
+
"step": 51
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"epoch": 0.9,
|
318 |
+
"learning_rate": 2.222222222222222e-06,
|
319 |
+
"loss": 0.8667,
|
320 |
+
"step": 52
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 0.92,
|
324 |
+
"learning_rate": 3.3333333333333333e-06,
|
325 |
+
"loss": 0.827,
|
326 |
+
"step": 53
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 0.94,
|
330 |
+
"learning_rate": 4.444444444444444e-06,
|
331 |
+
"loss": 0.8205,
|
332 |
+
"step": 54
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.95,
|
336 |
+
"learning_rate": 5.555555555555557e-06,
|
337 |
+
"loss": 0.7996,
|
338 |
+
"step": 55
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.97,
|
342 |
+
"learning_rate": 6.666666666666667e-06,
|
343 |
+
"loss": 0.8256,
|
344 |
+
"step": 56
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"epoch": 0.99,
|
348 |
+
"learning_rate": 7.77777777777778e-06,
|
349 |
+
"loss": 0.7938,
|
350 |
+
"step": 57
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"epoch": 1.0,
|
354 |
+
"learning_rate": 8.888888888888888e-06,
|
355 |
+
"loss": 0.7957,
|
356 |
+
"step": 58
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"epoch": 1.02,
|
360 |
+
"learning_rate": 1e-05,
|
361 |
+
"loss": 0.7284,
|
362 |
+
"step": 59
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"epoch": 1.04,
|
366 |
+
"learning_rate": 1.1111111111111113e-05,
|
367 |
+
"loss": 0.7159,
|
368 |
+
"step": 60
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 1.06,
|
372 |
+
"learning_rate": 1.2222222222222224e-05,
|
373 |
+
"loss": 0.7319,
|
374 |
+
"step": 61
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 1.07,
|
378 |
+
"learning_rate": 1.3333333333333333e-05,
|
379 |
+
"loss": 0.718,
|
380 |
+
"step": 62
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 1.09,
|
384 |
+
"learning_rate": 1.4444444444444446e-05,
|
385 |
+
"loss": 0.7225,
|
386 |
+
"step": 63
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"epoch": 1.11,
|
390 |
+
"learning_rate": 1.555555555555556e-05,
|
391 |
+
"loss": 0.6975,
|
392 |
+
"step": 64
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"epoch": 1.13,
|
396 |
+
"learning_rate": 1.6666666666666667e-05,
|
397 |
+
"loss": 0.686,
|
398 |
+
"step": 65
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"epoch": 1.14,
|
402 |
+
"learning_rate": 1.7777777777777777e-05,
|
403 |
+
"loss": 0.6895,
|
404 |
+
"step": 66
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"epoch": 1.16,
|
408 |
+
"learning_rate": 1.888888888888889e-05,
|
409 |
+
"loss": 0.726,
|
410 |
+
"step": 67
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 1.18,
|
414 |
+
"learning_rate": 2e-05,
|
415 |
+
"loss": 0.6859,
|
416 |
+
"step": 68
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 1.19,
|
420 |
+
"learning_rate": 1.9999838046468693e-05,
|
421 |
+
"loss": 0.6762,
|
422 |
+
"step": 69
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 1.21,
|
426 |
+
"learning_rate": 1.9999352191120556e-05,
|
427 |
+
"loss": 0.6762,
|
428 |
+
"step": 70
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"epoch": 1.23,
|
432 |
+
"learning_rate": 1.9998542449692794e-05,
|
433 |
+
"loss": 0.6844,
|
434 |
+
"step": 71
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"epoch": 1.25,
|
438 |
+
"learning_rate": 1.9997408848413494e-05,
|
439 |
+
"loss": 0.6845,
|
440 |
+
"step": 72
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"epoch": 1.26,
|
444 |
+
"learning_rate": 1.999595142400081e-05,
|
445 |
+
"loss": 0.6556,
|
446 |
+
"step": 73
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"epoch": 1.28,
|
450 |
+
"learning_rate": 1.999417022366174e-05,
|
451 |
+
"loss": 0.6594,
|
452 |
+
"step": 74
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 1.3,
|
456 |
+
"learning_rate": 1.999206530509063e-05,
|
457 |
+
"loss": 0.643,
|
458 |
+
"step": 75
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 1.32,
|
462 |
+
"learning_rate": 1.9989636736467278e-05,
|
463 |
+
"loss": 0.6619,
|
464 |
+
"step": 76
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 1.33,
|
468 |
+
"learning_rate": 1.998688459645473e-05,
|
469 |
+
"loss": 0.6278,
|
470 |
+
"step": 77
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"epoch": 1.35,
|
474 |
+
"learning_rate": 1.9983808974196752e-05,
|
475 |
+
"loss": 0.6406,
|
476 |
+
"step": 78
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"epoch": 1.37,
|
480 |
+
"learning_rate": 1.9980409969314917e-05,
|
481 |
+
"loss": 0.6401,
|
482 |
+
"step": 79
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 1.39,
|
486 |
+
"learning_rate": 1.9976687691905394e-05,
|
487 |
+
"loss": 0.613,
|
488 |
+
"step": 80
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 1.4,
|
492 |
+
"learning_rate": 1.997264226253538e-05,
|
493 |
+
"loss": 0.6566,
|
494 |
+
"step": 81
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 1.42,
|
498 |
+
"learning_rate": 1.9968273812239185e-05,
|
499 |
+
"loss": 0.6214,
|
500 |
+
"step": 82
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 1.44,
|
504 |
+
"learning_rate": 1.9963582482514003e-05,
|
505 |
+
"loss": 0.6824,
|
506 |
+
"step": 83
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 1.45,
|
510 |
+
"learning_rate": 1.9958568425315316e-05,
|
511 |
+
"loss": 0.6209,
|
512 |
+
"step": 84
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 1.47,
|
516 |
+
"learning_rate": 1.9953231803051977e-05,
|
517 |
+
"loss": 0.6382,
|
518 |
+
"step": 85
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 1.49,
|
522 |
+
"learning_rate": 1.994757278858095e-05,
|
523 |
+
"loss": 0.6292,
|
524 |
+
"step": 86
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 1.51,
|
528 |
+
"learning_rate": 1.9941591565201712e-05,
|
529 |
+
"loss": 0.6537,
|
530 |
+
"step": 87
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 1.52,
|
534 |
+
"learning_rate": 1.9935288326650314e-05,
|
535 |
+
"loss": 0.6451,
|
536 |
+
"step": 88
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 1.54,
|
540 |
+
"learning_rate": 1.99286632770931e-05,
|
541 |
+
"loss": 0.6433,
|
542 |
+
"step": 89
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 1.56,
|
546 |
+
"learning_rate": 1.992171663112011e-05,
|
547 |
+
"loss": 0.6449,
|
548 |
+
"step": 90
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 1.58,
|
552 |
+
"learning_rate": 1.9914448613738107e-05,
|
553 |
+
"loss": 0.6204,
|
554 |
+
"step": 91
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 1.59,
|
558 |
+
"learning_rate": 1.9906859460363307e-05,
|
559 |
+
"loss": 0.6378,
|
560 |
+
"step": 92
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"epoch": 1.61,
|
564 |
+
"learning_rate": 1.9898949416813757e-05,
|
565 |
+
"loss": 0.616,
|
566 |
+
"step": 93
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"epoch": 1.63,
|
570 |
+
"learning_rate": 1.9890718739301346e-05,
|
571 |
+
"loss": 0.5997,
|
572 |
+
"step": 94
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 1.65,
|
576 |
+
"learning_rate": 1.988216769442353e-05,
|
577 |
+
"loss": 0.6771,
|
578 |
+
"step": 95
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 1.66,
|
582 |
+
"learning_rate": 1.98732965591547e-05,
|
583 |
+
"loss": 0.6288,
|
584 |
+
"step": 96
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 1.68,
|
588 |
+
"learning_rate": 1.9864105620837182e-05,
|
589 |
+
"loss": 0.656,
|
590 |
+
"step": 97
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 1.7,
|
594 |
+
"learning_rate": 1.9854595177171968e-05,
|
595 |
+
"loss": 0.6113,
|
596 |
+
"step": 98
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 1.71,
|
600 |
+
"learning_rate": 1.9844765536209045e-05,
|
601 |
+
"loss": 0.6113,
|
602 |
+
"step": 99
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"epoch": 1.73,
|
606 |
+
"learning_rate": 1.9834617016337424e-05,
|
607 |
+
"loss": 0.6346,
|
608 |
+
"step": 100
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 1.75,
|
612 |
+
"learning_rate": 1.9824149946274827e-05,
|
613 |
+
"loss": 0.6125,
|
614 |
+
"step": 101
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 1.77,
|
618 |
+
"learning_rate": 1.981336466505705e-05,
|
619 |
+
"loss": 0.617,
|
620 |
+
"step": 102
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 1.78,
|
624 |
+
"learning_rate": 1.980226152202697e-05,
|
625 |
+
"loss": 0.6278,
|
626 |
+
"step": 103
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 1.8,
|
630 |
+
"learning_rate": 1.979084087682323e-05,
|
631 |
+
"loss": 0.619,
|
632 |
+
"step": 104
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 1.82,
|
636 |
+
"learning_rate": 1.9779103099368596e-05,
|
637 |
+
"loss": 0.6252,
|
638 |
+
"step": 105
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"epoch": 1.84,
|
642 |
+
"learning_rate": 1.9767048569857963e-05,
|
643 |
+
"loss": 0.6185,
|
644 |
+
"step": 106
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"epoch": 1.85,
|
648 |
+
"learning_rate": 1.9754677678746064e-05,
|
649 |
+
"loss": 0.6144,
|
650 |
+
"step": 107
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 1.87,
|
654 |
+
"learning_rate": 1.9741990826734793e-05,
|
655 |
+
"loss": 0.6116,
|
656 |
+
"step": 108
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 1.89,
|
660 |
+
"learning_rate": 1.972898842476025e-05,
|
661 |
+
"loss": 0.6229,
|
662 |
+
"step": 109
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 1.9,
|
666 |
+
"learning_rate": 1.9715670893979416e-05,
|
667 |
+
"loss": 0.6029,
|
668 |
+
"step": 110
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 1.92,
|
672 |
+
"learning_rate": 1.9702038665756522e-05,
|
673 |
+
"loss": 0.588,
|
674 |
+
"step": 111
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 1.94,
|
678 |
+
"learning_rate": 1.9688092181649065e-05,
|
679 |
+
"loss": 0.6343,
|
680 |
+
"step": 112
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"epoch": 1.96,
|
684 |
+
"learning_rate": 1.967383189339352e-05,
|
685 |
+
"loss": 0.6044,
|
686 |
+
"step": 113
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"epoch": 1.97,
|
690 |
+
"learning_rate": 1.9659258262890683e-05,
|
691 |
+
"loss": 0.5969,
|
692 |
+
"step": 114
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"epoch": 1.99,
|
696 |
+
"learning_rate": 1.964437176219075e-05,
|
697 |
+
"loss": 0.6034,
|
698 |
+
"step": 115
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 2.01,
|
702 |
+
"learning_rate": 1.9629172873477995e-05,
|
703 |
+
"loss": 0.5693,
|
704 |
+
"step": 116
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 2.03,
|
708 |
+
"learning_rate": 1.9613662089055148e-05,
|
709 |
+
"loss": 0.4744,
|
710 |
+
"step": 117
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 2.04,
|
714 |
+
"learning_rate": 1.9597839911327475e-05,
|
715 |
+
"loss": 0.4942,
|
716 |
+
"step": 118
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 2.06,
|
720 |
+
"learning_rate": 1.9581706852786492e-05,
|
721 |
+
"loss": 0.4684,
|
722 |
+
"step": 119
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"epoch": 2.08,
|
726 |
+
"learning_rate": 1.956526343599335e-05,
|
727 |
+
"loss": 0.4619,
|
728 |
+
"step": 120
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"epoch": 2.1,
|
732 |
+
"learning_rate": 1.9548510193561938e-05,
|
733 |
+
"loss": 0.4727,
|
734 |
+
"step": 121
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 2.11,
|
738 |
+
"learning_rate": 1.953144766814161e-05,
|
739 |
+
"loss": 0.4564,
|
740 |
+
"step": 122
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"epoch": 2.13,
|
744 |
+
"learning_rate": 1.9514076412399615e-05,
|
745 |
+
"loss": 0.4622,
|
746 |
+
"step": 123
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 2.15,
|
750 |
+
"learning_rate": 1.9496396989003195e-05,
|
751 |
+
"loss": 0.4508,
|
752 |
+
"step": 124
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 2.16,
|
756 |
+
"learning_rate": 1.947840997060136e-05,
|
757 |
+
"loss": 0.4685,
|
758 |
+
"step": 125
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 2.18,
|
762 |
+
"learning_rate": 1.946011593980634e-05,
|
763 |
+
"loss": 0.439,
|
764 |
+
"step": 126
|
765 |
+
},
|
766 |
+
{
|
767 |
+
"epoch": 2.2,
|
768 |
+
"learning_rate": 1.9441515489174708e-05,
|
769 |
+
"loss": 0.4212,
|
770 |
+
"step": 127
|
771 |
+
},
|
772 |
+
{
|
773 |
+
"epoch": 2.22,
|
774 |
+
"learning_rate": 1.9422609221188208e-05,
|
775 |
+
"loss": 0.4541,
|
776 |
+
"step": 128
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"epoch": 2.23,
|
780 |
+
"learning_rate": 1.94033977482342e-05,
|
781 |
+
"loss": 0.4522,
|
782 |
+
"step": 129
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"epoch": 2.25,
|
786 |
+
"learning_rate": 1.938388169258587e-05,
|
787 |
+
"loss": 0.425,
|
788 |
+
"step": 130
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 2.27,
|
792 |
+
"learning_rate": 1.9364061686382042e-05,
|
793 |
+
"loss": 0.4692,
|
794 |
+
"step": 131
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"epoch": 2.29,
|
798 |
+
"learning_rate": 1.9343938371606714e-05,
|
799 |
+
"loss": 0.458,
|
800 |
+
"step": 132
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 2.3,
|
804 |
+
"learning_rate": 1.9323512400068262e-05,
|
805 |
+
"loss": 0.448,
|
806 |
+
"step": 133
|
807 |
+
},
|
808 |
+
{
|
809 |
+
"epoch": 2.32,
|
810 |
+
"learning_rate": 1.9302784433378333e-05,
|
811 |
+
"loss": 0.4646,
|
812 |
+
"step": 134
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"epoch": 2.34,
|
816 |
+
"learning_rate": 1.928175514293041e-05,
|
817 |
+
"loss": 0.4385,
|
818 |
+
"step": 135
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"epoch": 2.35,
|
822 |
+
"learning_rate": 1.9260425209878052e-05,
|
823 |
+
"loss": 0.457,
|
824 |
+
"step": 136
|
825 |
+
},
|
826 |
+
{
|
827 |
+
"epoch": 2.37,
|
828 |
+
"learning_rate": 1.9238795325112867e-05,
|
829 |
+
"loss": 0.4599,
|
830 |
+
"step": 137
|
831 |
+
},
|
832 |
+
{
|
833 |
+
"epoch": 2.39,
|
834 |
+
"learning_rate": 1.9216866189242095e-05,
|
835 |
+
"loss": 0.4387,
|
836 |
+
"step": 138
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 2.41,
|
840 |
+
"learning_rate": 1.9194638512565937e-05,
|
841 |
+
"loss": 0.4588,
|
842 |
+
"step": 139
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 2.42,
|
846 |
+
"learning_rate": 1.917211301505453e-05,
|
847 |
+
"loss": 0.4611,
|
848 |
+
"step": 140
|
849 |
+
},
|
850 |
+
{
|
851 |
+
"epoch": 2.44,
|
852 |
+
"learning_rate": 1.9149290426324658e-05,
|
853 |
+
"loss": 0.4617,
|
854 |
+
"step": 141
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"epoch": 2.46,
|
858 |
+
"learning_rate": 1.912617148561608e-05,
|
859 |
+
"loss": 0.4652,
|
860 |
+
"step": 142
|
861 |
+
},
|
862 |
+
{
|
863 |
+
"epoch": 2.48,
|
864 |
+
"learning_rate": 1.9102756941767625e-05,
|
865 |
+
"loss": 0.4507,
|
866 |
+
"step": 143
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"epoch": 2.49,
|
870 |
+
"learning_rate": 1.907904755319289e-05,
|
871 |
+
"loss": 0.4509,
|
872 |
+
"step": 144
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"epoch": 2.51,
|
876 |
+
"learning_rate": 1.9055044087855728e-05,
|
877 |
+
"loss": 0.4532,
|
878 |
+
"step": 145
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 2.53,
|
882 |
+
"learning_rate": 1.903074732324533e-05,
|
883 |
+
"loss": 0.4551,
|
884 |
+
"step": 146
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 2.55,
|
888 |
+
"learning_rate": 1.900615804635106e-05,
|
889 |
+
"loss": 0.4452,
|
890 |
+
"step": 147
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"epoch": 2.56,
|
894 |
+
"learning_rate": 1.8981277053636963e-05,
|
895 |
+
"loss": 0.4509,
|
896 |
+
"step": 148
|
897 |
+
},
|
898 |
+
{
|
899 |
+
"epoch": 2.58,
|
900 |
+
"learning_rate": 1.8956105151015966e-05,
|
901 |
+
"loss": 0.4544,
|
902 |
+
"step": 149
|
903 |
+
},
|
904 |
+
{
|
905 |
+
"epoch": 2.6,
|
906 |
+
"learning_rate": 1.8930643153823777e-05,
|
907 |
+
"loss": 0.4436,
|
908 |
+
"step": 150
|
909 |
+
},
|
910 |
+
{
|
911 |
+
"epoch": 2.61,
|
912 |
+
"learning_rate": 1.8904891886792465e-05,
|
913 |
+
"loss": 0.4397,
|
914 |
+
"step": 151
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"epoch": 2.63,
|
918 |
+
"learning_rate": 1.8878852184023754e-05,
|
919 |
+
"loss": 0.4456,
|
920 |
+
"step": 152
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"epoch": 2.65,
|
924 |
+
"learning_rate": 1.885252488896201e-05,
|
925 |
+
"loss": 0.4397,
|
926 |
+
"step": 153
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 2.67,
|
930 |
+
"learning_rate": 1.8825910854366914e-05,
|
931 |
+
"loss": 0.4551,
|
932 |
+
"step": 154
|
933 |
+
},
|
934 |
+
{
|
935 |
+
"epoch": 2.68,
|
936 |
+
"learning_rate": 1.879901094228584e-05,
|
937 |
+
"loss": 0.4485,
|
938 |
+
"step": 155
|
939 |
+
},
|
940 |
+
{
|
941 |
+
"epoch": 2.7,
|
942 |
+
"learning_rate": 1.8771826024025944e-05,
|
943 |
+
"loss": 0.451,
|
944 |
+
"step": 156
|
945 |
+
},
|
946 |
+
{
|
947 |
+
"epoch": 2.72,
|
948 |
+
"learning_rate": 1.8744356980125922e-05,
|
949 |
+
"loss": 0.4481,
|
950 |
+
"step": 157
|
951 |
+
},
|
952 |
+
{
|
953 |
+
"epoch": 2.74,
|
954 |
+
"learning_rate": 1.8716604700327516e-05,
|
955 |
+
"loss": 0.4463,
|
956 |
+
"step": 158
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"epoch": 2.75,
|
960 |
+
"learning_rate": 1.8688570083546658e-05,
|
961 |
+
"loss": 0.4459,
|
962 |
+
"step": 159
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 2.77,
|
966 |
+
"learning_rate": 1.866025403784439e-05,
|
967 |
+
"loss": 0.4586,
|
968 |
+
"step": 160
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 2.79,
|
972 |
+
"learning_rate": 1.863165748039743e-05,
|
973 |
+
"loss": 0.4512,
|
974 |
+
"step": 161
|
975 |
+
},
|
976 |
+
{
|
977 |
+
"epoch": 2.81,
|
978 |
+
"learning_rate": 1.8602781337468472e-05,
|
979 |
+
"loss": 0.473,
|
980 |
+
"step": 162
|
981 |
+
},
|
982 |
+
{
|
983 |
+
"epoch": 2.82,
|
984 |
+
"learning_rate": 1.857362654437618e-05,
|
985 |
+
"loss": 0.457,
|
986 |
+
"step": 163
|
987 |
+
},
|
988 |
+
{
|
989 |
+
"epoch": 2.84,
|
990 |
+
"learning_rate": 1.8544194045464888e-05,
|
991 |
+
"loss": 0.4694,
|
992 |
+
"step": 164
|
993 |
+
},
|
994 |
+
{
|
995 |
+
"epoch": 2.86,
|
996 |
+
"learning_rate": 1.8514484794074028e-05,
|
997 |
+
"loss": 0.4526,
|
998 |
+
"step": 165
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"epoch": 2.87,
|
1002 |
+
"learning_rate": 1.8484499752507234e-05,
|
1003 |
+
"loss": 0.4473,
|
1004 |
+
"step": 166
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 2.89,
|
1008 |
+
"learning_rate": 1.845423989200118e-05,
|
1009 |
+
"loss": 0.4438,
|
1010 |
+
"step": 167
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 2.91,
|
1014 |
+
"learning_rate": 1.8423706192694118e-05,
|
1015 |
+
"loss": 0.4663,
|
1016 |
+
"step": 168
|
1017 |
+
},
|
1018 |
+
{
|
1019 |
+
"epoch": 2.93,
|
1020 |
+
"learning_rate": 1.8392899643594135e-05,
|
1021 |
+
"loss": 0.4682,
|
1022 |
+
"step": 169
|
1023 |
+
},
|
1024 |
+
{
|
1025 |
+
"epoch": 2.94,
|
1026 |
+
"learning_rate": 1.836182124254711e-05,
|
1027 |
+
"loss": 0.4545,
|
1028 |
+
"step": 170
|
1029 |
+
},
|
1030 |
+
{
|
1031 |
+
"epoch": 2.96,
|
1032 |
+
"learning_rate": 1.8330471996204408e-05,
|
1033 |
+
"loss": 0.4507,
|
1034 |
+
"step": 171
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"epoch": 2.98,
|
1038 |
+
"learning_rate": 1.8298852919990254e-05,
|
1039 |
+
"loss": 0.4735,
|
1040 |
+
"step": 172
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 3.0,
|
1044 |
+
"learning_rate": 1.8266965038068856e-05,
|
1045 |
+
"loss": 0.4431,
|
1046 |
+
"step": 173
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"epoch": 3.01,
|
1050 |
+
"learning_rate": 1.823480938331124e-05,
|
1051 |
+
"loss": 0.3441,
|
1052 |
+
"step": 174
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 3.03,
|
1056 |
+
"learning_rate": 1.820238699726177e-05,
|
1057 |
+
"loss": 0.3109,
|
1058 |
+
"step": 175
|
1059 |
+
},
|
1060 |
+
{
|
1061 |
+
"epoch": 3.05,
|
1062 |
+
"learning_rate": 1.816969893010442e-05,
|
1063 |
+
"loss": 0.2899,
|
1064 |
+
"step": 176
|
1065 |
+
},
|
1066 |
+
{
|
1067 |
+
"epoch": 3.06,
|
1068 |
+
"learning_rate": 1.8136746240628783e-05,
|
1069 |
+
"loss": 0.2861,
|
1070 |
+
"step": 177
|
1071 |
+
},
|
1072 |
+
{
|
1073 |
+
"epoch": 3.08,
|
1074 |
+
"learning_rate": 1.810352999619574e-05,
|
1075 |
+
"loss": 0.2917,
|
1076 |
+
"step": 178
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"epoch": 3.1,
|
1080 |
+
"learning_rate": 1.8070051272702905e-05,
|
1081 |
+
"loss": 0.2885,
|
1082 |
+
"step": 179
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 3.12,
|
1086 |
+
"learning_rate": 1.8036311154549783e-05,
|
1087 |
+
"loss": 0.2769,
|
1088 |
+
"step": 180
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 3.13,
|
1092 |
+
"learning_rate": 1.8002310734602625e-05,
|
1093 |
+
"loss": 0.2687,
|
1094 |
+
"step": 181
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 3.15,
|
1098 |
+
"learning_rate": 1.7968051114159046e-05,
|
1099 |
+
"loss": 0.2703,
|
1100 |
+
"step": 182
|
1101 |
+
},
|
1102 |
+
{
|
1103 |
+
"epoch": 3.17,
|
1104 |
+
"learning_rate": 1.7933533402912354e-05,
|
1105 |
+
"loss": 0.2642,
|
1106 |
+
"step": 183
|
1107 |
+
},
|
1108 |
+
{
|
1109 |
+
"epoch": 3.19,
|
1110 |
+
"learning_rate": 1.789875871891559e-05,
|
1111 |
+
"loss": 0.2688,
|
1112 |
+
"step": 184
|
1113 |
+
},
|
1114 |
+
{
|
1115 |
+
"epoch": 3.2,
|
1116 |
+
"learning_rate": 1.7863728188545326e-05,
|
1117 |
+
"loss": 0.2778,
|
1118 |
+
"step": 185
|
1119 |
+
},
|
1120 |
+
{
|
1121 |
+
"epoch": 3.22,
|
1122 |
+
"learning_rate": 1.7828442946465188e-05,
|
1123 |
+
"loss": 0.2652,
|
1124 |
+
"step": 186
|
1125 |
+
},
|
1126 |
+
{
|
1127 |
+
"epoch": 3.24,
|
1128 |
+
"learning_rate": 1.7792904135589085e-05,
|
1129 |
+
"loss": 0.2645,
|
1130 |
+
"step": 187
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 3.26,
|
1134 |
+
"learning_rate": 1.77571129070442e-05,
|
1135 |
+
"loss": 0.2801,
|
1136 |
+
"step": 188
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 3.27,
|
1140 |
+
"learning_rate": 1.7721070420133702e-05,
|
1141 |
+
"loss": 0.2712,
|
1142 |
+
"step": 189
|
1143 |
+
},
|
1144 |
+
{
|
1145 |
+
"epoch": 3.29,
|
1146 |
+
"learning_rate": 1.7684777842299206e-05,
|
1147 |
+
"loss": 0.2563,
|
1148 |
+
"step": 190
|
1149 |
+
},
|
1150 |
+
{
|
1151 |
+
"epoch": 3.31,
|
1152 |
+
"learning_rate": 1.7648236349082928e-05,
|
1153 |
+
"loss": 0.2657,
|
1154 |
+
"step": 191
|
1155 |
+
},
|
1156 |
+
{
|
1157 |
+
"epoch": 3.32,
|
1158 |
+
"learning_rate": 1.761144712408965e-05,
|
1159 |
+
"loss": 0.2544,
|
1160 |
+
"step": 192
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"epoch": 3.34,
|
1164 |
+
"learning_rate": 1.7574411358948347e-05,
|
1165 |
+
"loss": 0.2623,
|
1166 |
+
"step": 193
|
1167 |
+
},
|
1168 |
+
{
|
1169 |
+
"epoch": 3.36,
|
1170 |
+
"learning_rate": 1.7537130253273613e-05,
|
1171 |
+
"loss": 0.2522,
|
1172 |
+
"step": 194
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 3.38,
|
1176 |
+
"learning_rate": 1.7499605014626786e-05,
|
1177 |
+
"loss": 0.2576,
|
1178 |
+
"step": 195
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 3.39,
|
1182 |
+
"learning_rate": 1.7461836858476858e-05,
|
1183 |
+
"loss": 0.2722,
|
1184 |
+
"step": 196
|
1185 |
+
},
|
1186 |
+
{
|
1187 |
+
"epoch": 3.41,
|
1188 |
+
"learning_rate": 1.742382700816107e-05,
|
1189 |
+
"loss": 0.2766,
|
1190 |
+
"step": 197
|
1191 |
+
},
|
1192 |
+
{
|
1193 |
+
"epoch": 3.43,
|
1194 |
+
"learning_rate": 1.7385576694845324e-05,
|
1195 |
+
"loss": 0.2663,
|
1196 |
+
"step": 198
|
1197 |
+
},
|
1198 |
+
{
|
1199 |
+
"epoch": 3.45,
|
1200 |
+
"learning_rate": 1.7347087157484282e-05,
|
1201 |
+
"loss": 0.2778,
|
1202 |
+
"step": 199
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 3.46,
|
1206 |
+
"learning_rate": 1.730835964278124e-05,
|
1207 |
+
"loss": 0.2678,
|
1208 |
+
"step": 200
|
1209 |
+
},
|
1210 |
+
{
|
1211 |
+
"epoch": 3.48,
|
1212 |
+
"learning_rate": 1.726939540514776e-05,
|
1213 |
+
"loss": 0.2769,
|
1214 |
+
"step": 201
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 3.5,
|
1218 |
+
"learning_rate": 1.723019570666301e-05,
|
1219 |
+
"loss": 0.2662,
|
1220 |
+
"step": 202
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 3.52,
|
1224 |
+
"learning_rate": 1.719076181703291e-05,
|
1225 |
+
"loss": 0.2684,
|
1226 |
+
"step": 203
|
1227 |
+
},
|
1228 |
+
{
|
1229 |
+
"epoch": 3.53,
|
1230 |
+
"learning_rate": 1.7151095013548996e-05,
|
1231 |
+
"loss": 0.2758,
|
1232 |
+
"step": 204
|
1233 |
+
},
|
1234 |
+
{
|
1235 |
+
"epoch": 3.55,
|
1236 |
+
"learning_rate": 1.711119658104705e-05,
|
1237 |
+
"loss": 0.2668,
|
1238 |
+
"step": 205
|
1239 |
+
},
|
1240 |
+
{
|
1241 |
+
"epoch": 3.57,
|
1242 |
+
"learning_rate": 1.7071067811865477e-05,
|
1243 |
+
"loss": 0.2708,
|
1244 |
+
"step": 206
|
1245 |
+
},
|
1246 |
+
{
|
1247 |
+
"epoch": 3.58,
|
1248 |
+
"learning_rate": 1.7030710005803453e-05,
|
1249 |
+
"loss": 0.2663,
|
1250 |
+
"step": 207
|
1251 |
+
},
|
1252 |
+
{
|
1253 |
+
"epoch": 3.6,
|
1254 |
+
"learning_rate": 1.699012447007882e-05,
|
1255 |
+
"loss": 0.2744,
|
1256 |
+
"step": 208
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"epoch": 3.62,
|
1260 |
+
"learning_rate": 1.694931251928575e-05,
|
1261 |
+
"loss": 0.2821,
|
1262 |
+
"step": 209
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 3.64,
|
1266 |
+
"learning_rate": 1.690827547535214e-05,
|
1267 |
+
"loss": 0.2635,
|
1268 |
+
"step": 210
|
1269 |
+
},
|
1270 |
+
{
|
1271 |
+
"epoch": 3.65,
|
1272 |
+
"learning_rate": 1.6867014667496838e-05,
|
1273 |
+
"loss": 0.2729,
|
1274 |
+
"step": 211
|
1275 |
+
},
|
1276 |
+
{
|
1277 |
+
"epoch": 3.67,
|
1278 |
+
"learning_rate": 1.6825531432186545e-05,
|
1279 |
+
"loss": 0.2759,
|
1280 |
+
"step": 212
|
1281 |
+
},
|
1282 |
+
{
|
1283 |
+
"epoch": 3.69,
|
1284 |
+
"learning_rate": 1.6783827113092547e-05,
|
1285 |
+
"loss": 0.2795,
|
1286 |
+
"step": 213
|
1287 |
+
},
|
1288 |
+
{
|
1289 |
+
"epoch": 3.71,
|
1290 |
+
"learning_rate": 1.6741903061047204e-05,
|
1291 |
+
"loss": 0.2857,
|
1292 |
+
"step": 214
|
1293 |
+
},
|
1294 |
+
{
|
1295 |
+
"epoch": 3.72,
|
1296 |
+
"learning_rate": 1.6699760634000166e-05,
|
1297 |
+
"loss": 0.2833,
|
1298 |
+
"step": 215
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"epoch": 3.74,
|
1302 |
+
"learning_rate": 1.6657401196974405e-05,
|
1303 |
+
"loss": 0.2844,
|
1304 |
+
"step": 216
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 3.76,
|
1308 |
+
"learning_rate": 1.6614826122022015e-05,
|
1309 |
+
"loss": 0.2868,
|
1310 |
+
"step": 217
|
1311 |
+
},
|
1312 |
+
{
|
1313 |
+
"epoch": 3.77,
|
1314 |
+
"learning_rate": 1.6572036788179728e-05,
|
1315 |
+
"loss": 0.2819,
|
1316 |
+
"step": 218
|
1317 |
+
},
|
1318 |
+
{
|
1319 |
+
"epoch": 3.79,
|
1320 |
+
"learning_rate": 1.6529034581424293e-05,
|
1321 |
+
"loss": 0.2739,
|
1322 |
+
"step": 219
|
1323 |
+
},
|
1324 |
+
{
|
1325 |
+
"epoch": 3.81,
|
1326 |
+
"learning_rate": 1.648582089462756e-05,
|
1327 |
+
"loss": 0.2735,
|
1328 |
+
"step": 220
|
1329 |
+
},
|
1330 |
+
{
|
1331 |
+
"epoch": 3.83,
|
1332 |
+
"learning_rate": 1.6442397127511366e-05,
|
1333 |
+
"loss": 0.2718,
|
1334 |
+
"step": 221
|
1335 |
+
},
|
1336 |
+
{
|
1337 |
+
"epoch": 3.84,
|
1338 |
+
"learning_rate": 1.6398764686602188e-05,
|
1339 |
+
"loss": 0.2751,
|
1340 |
+
"step": 222
|
1341 |
+
},
|
1342 |
+
{
|
1343 |
+
"epoch": 3.86,
|
1344 |
+
"learning_rate": 1.6354924985185614e-05,
|
1345 |
+
"loss": 0.2729,
|
1346 |
+
"step": 223
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 3.88,
|
1350 |
+
"learning_rate": 1.631087944326053e-05,
|
1351 |
+
"loss": 0.2758,
|
1352 |
+
"step": 224
|
1353 |
+
},
|
1354 |
+
{
|
1355 |
+
"epoch": 3.9,
|
1356 |
+
"learning_rate": 1.6266629487493144e-05,
|
1357 |
+
"loss": 0.27,
|
1358 |
+
"step": 225
|
1359 |
+
},
|
1360 |
+
{
|
1361 |
+
"epoch": 3.91,
|
1362 |
+
"learning_rate": 1.622217655117078e-05,
|
1363 |
+
"loss": 0.2755,
|
1364 |
+
"step": 226
|
1365 |
+
},
|
1366 |
+
{
|
1367 |
+
"epoch": 3.93,
|
1368 |
+
"learning_rate": 1.6177522074155436e-05,
|
1369 |
+
"loss": 0.2919,
|
1370 |
+
"step": 227
|
1371 |
+
},
|
1372 |
+
{
|
1373 |
+
"epoch": 3.95,
|
1374 |
+
"learning_rate": 1.6132667502837164e-05,
|
1375 |
+
"loss": 0.2715,
|
1376 |
+
"step": 228
|
1377 |
+
},
|
1378 |
+
{
|
1379 |
+
"epoch": 3.97,
|
1380 |
+
"learning_rate": 1.608761429008721e-05,
|
1381 |
+
"loss": 0.2761,
|
1382 |
+
"step": 229
|
1383 |
+
},
|
1384 |
+
{
|
1385 |
+
"epoch": 3.98,
|
1386 |
+
"learning_rate": 1.6042363895210948e-05,
|
1387 |
+
"loss": 0.2746,
|
1388 |
+
"step": 230
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 4.0,
|
1392 |
+
"learning_rate": 1.5996917783900633e-05,
|
1393 |
+
"loss": 0.2849,
|
1394 |
+
"step": 231
|
1395 |
+
},
|
1396 |
+
{
|
1397 |
+
"epoch": 4.02,
|
1398 |
+
"learning_rate": 1.59512774281879e-05,
|
1399 |
+
"loss": 0.1437,
|
1400 |
+
"step": 232
|
1401 |
+
},
|
1402 |
+
{
|
1403 |
+
"epoch": 4.03,
|
1404 |
+
"learning_rate": 1.590544430639611e-05,
|
1405 |
+
"loss": 0.1407,
|
1406 |
+
"step": 233
|
1407 |
+
},
|
1408 |
+
{
|
1409 |
+
"epoch": 4.05,
|
1410 |
+
"learning_rate": 1.585941990309245e-05,
|
1411 |
+
"loss": 0.138,
|
1412 |
+
"step": 234
|
1413 |
+
},
|
1414 |
+
{
|
1415 |
+
"epoch": 4.07,
|
1416 |
+
"learning_rate": 1.5813205709039842e-05,
|
1417 |
+
"loss": 0.1311,
|
1418 |
+
"step": 235
|
1419 |
+
},
|
1420 |
+
{
|
1421 |
+
"epoch": 4.09,
|
1422 |
+
"learning_rate": 1.5766803221148676e-05,
|
1423 |
+
"loss": 0.1281,
|
1424 |
+
"step": 236
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"epoch": 4.1,
|
1428 |
+
"learning_rate": 1.57202139424283e-05,
|
1429 |
+
"loss": 0.1323,
|
1430 |
+
"step": 237
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 4.12,
|
1434 |
+
"learning_rate": 1.5673439381938365e-05,
|
1435 |
+
"loss": 0.129,
|
1436 |
+
"step": 238
|
1437 |
+
},
|
1438 |
+
{
|
1439 |
+
"epoch": 4.14,
|
1440 |
+
"learning_rate": 1.5626481054739916e-05,
|
1441 |
+
"loss": 0.1325,
|
1442 |
+
"step": 239
|
1443 |
+
},
|
1444 |
+
{
|
1445 |
+
"epoch": 4.16,
|
1446 |
+
"learning_rate": 1.5579340481846338e-05,
|
1447 |
+
"loss": 0.1222,
|
1448 |
+
"step": 240
|
1449 |
+
},
|
1450 |
+
{
|
1451 |
+
"epoch": 4.17,
|
1452 |
+
"learning_rate": 1.5532019190174074e-05,
|
1453 |
+
"loss": 0.1305,
|
1454 |
+
"step": 241
|
1455 |
+
},
|
1456 |
+
{
|
1457 |
+
"epoch": 4.19,
|
1458 |
+
"learning_rate": 1.5484518712493188e-05,
|
1459 |
+
"loss": 0.1165,
|
1460 |
+
"step": 242
|
1461 |
+
},
|
1462 |
+
{
|
1463 |
+
"epoch": 4.21,
|
1464 |
+
"learning_rate": 1.54368405873777e-05,
|
1465 |
+
"loss": 0.1212,
|
1466 |
+
"step": 243
|
1467 |
+
},
|
1468 |
+
{
|
1469 |
+
"epoch": 4.23,
|
1470 |
+
"learning_rate": 1.538898635915576e-05,
|
1471 |
+
"loss": 0.1282,
|
1472 |
+
"step": 244
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 4.24,
|
1476 |
+
"learning_rate": 1.5340957577859605e-05,
|
1477 |
+
"loss": 0.1267,
|
1478 |
+
"step": 245
|
1479 |
+
},
|
1480 |
+
{
|
1481 |
+
"epoch": 4.26,
|
1482 |
+
"learning_rate": 1.529275579917539e-05,
|
1483 |
+
"loss": 0.1216,
|
1484 |
+
"step": 246
|
1485 |
+
},
|
1486 |
+
{
|
1487 |
+
"epoch": 4.28,
|
1488 |
+
"learning_rate": 1.5244382584392772e-05,
|
1489 |
+
"loss": 0.1196,
|
1490 |
+
"step": 247
|
1491 |
+
},
|
1492 |
+
{
|
1493 |
+
"epoch": 4.29,
|
1494 |
+
"learning_rate": 1.5195839500354337e-05,
|
1495 |
+
"loss": 0.1202,
|
1496 |
+
"step": 248
|
1497 |
+
},
|
1498 |
+
{
|
1499 |
+
"epoch": 4.31,
|
1500 |
+
"learning_rate": 1.5147128119404863e-05,
|
1501 |
+
"loss": 0.1272,
|
1502 |
+
"step": 249
|
1503 |
+
},
|
1504 |
+
{
|
1505 |
+
"epoch": 4.33,
|
1506 |
+
"learning_rate": 1.5098250019340385e-05,
|
1507 |
+
"loss": 0.1207,
|
1508 |
+
"step": 250
|
1509 |
+
},
|
1510 |
+
{
|
1511 |
+
"epoch": 4.35,
|
1512 |
+
"learning_rate": 1.5049206783357082e-05,
|
1513 |
+
"loss": 0.1233,
|
1514 |
+
"step": 251
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 4.36,
|
1518 |
+
"learning_rate": 1.5000000000000002e-05,
|
1519 |
+
"loss": 0.1124,
|
1520 |
+
"step": 252
|
1521 |
+
},
|
1522 |
+
{
|
1523 |
+
"epoch": 4.38,
|
1524 |
+
"learning_rate": 1.4950631263111615e-05,
|
1525 |
+
"loss": 0.1131,
|
1526 |
+
"step": 253
|
1527 |
+
},
|
1528 |
+
{
|
1529 |
+
"epoch": 4.4,
|
1530 |
+
"learning_rate": 1.4901102171780175e-05,
|
1531 |
+
"loss": 0.1165,
|
1532 |
+
"step": 254
|
1533 |
+
},
|
1534 |
+
{
|
1535 |
+
"epoch": 4.42,
|
1536 |
+
"learning_rate": 1.485141433028793e-05,
|
1537 |
+
"loss": 0.1198,
|
1538 |
+
"step": 255
|
1539 |
+
},
|
1540 |
+
{
|
1541 |
+
"epoch": 4.43,
|
1542 |
+
"learning_rate": 1.4801569348059158e-05,
|
1543 |
+
"loss": 0.1199,
|
1544 |
+
"step": 256
|
1545 |
+
},
|
1546 |
+
{
|
1547 |
+
"epoch": 4.45,
|
1548 |
+
"learning_rate": 1.4751568839608036e-05,
|
1549 |
+
"loss": 0.1171,
|
1550 |
+
"step": 257
|
1551 |
+
},
|
1552 |
+
{
|
1553 |
+
"epoch": 4.47,
|
1554 |
+
"learning_rate": 1.4701414424486353e-05,
|
1555 |
+
"loss": 0.12,
|
1556 |
+
"step": 258
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 4.48,
|
1560 |
+
"learning_rate": 1.4651107727231032e-05,
|
1561 |
+
"loss": 0.1239,
|
1562 |
+
"step": 259
|
1563 |
+
},
|
1564 |
+
{
|
1565 |
+
"epoch": 4.5,
|
1566 |
+
"learning_rate": 1.4600650377311523e-05,
|
1567 |
+
"loss": 0.1157,
|
1568 |
+
"step": 260
|
1569 |
+
},
|
1570 |
+
{
|
1571 |
+
"epoch": 4.52,
|
1572 |
+
"learning_rate": 1.455004400907703e-05,
|
1573 |
+
"loss": 0.1188,
|
1574 |
+
"step": 261
|
1575 |
+
},
|
1576 |
+
{
|
1577 |
+
"epoch": 4.54,
|
1578 |
+
"learning_rate": 1.4499290261703565e-05,
|
1579 |
+
"loss": 0.1143,
|
1580 |
+
"step": 262
|
1581 |
+
},
|
1582 |
+
{
|
1583 |
+
"epoch": 4.55,
|
1584 |
+
"learning_rate": 1.4448390779140844e-05,
|
1585 |
+
"loss": 0.1203,
|
1586 |
+
"step": 263
|
1587 |
+
},
|
1588 |
+
{
|
1589 |
+
"epoch": 4.57,
|
1590 |
+
"learning_rate": 1.4397347210059059e-05,
|
1591 |
+
"loss": 0.1164,
|
1592 |
+
"step": 264
|
1593 |
+
},
|
1594 |
+
{
|
1595 |
+
"epoch": 4.59,
|
1596 |
+
"learning_rate": 1.4346161207795464e-05,
|
1597 |
+
"loss": 0.1323,
|
1598 |
+
"step": 265
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 4.61,
|
1602 |
+
"learning_rate": 1.4294834430300822e-05,
|
1603 |
+
"loss": 0.1238,
|
1604 |
+
"step": 266
|
1605 |
+
},
|
1606 |
+
{
|
1607 |
+
"epoch": 4.62,
|
1608 |
+
"learning_rate": 1.4243368540085702e-05,
|
1609 |
+
"loss": 0.1254,
|
1610 |
+
"step": 267
|
1611 |
+
},
|
1612 |
+
{
|
1613 |
+
"epoch": 4.64,
|
1614 |
+
"learning_rate": 1.4191765204166643e-05,
|
1615 |
+
"loss": 0.1245,
|
1616 |
+
"step": 268
|
1617 |
+
},
|
1618 |
+
{
|
1619 |
+
"epoch": 4.66,
|
1620 |
+
"learning_rate": 1.4140026094012136e-05,
|
1621 |
+
"loss": 0.1255,
|
1622 |
+
"step": 269
|
1623 |
+
},
|
1624 |
+
{
|
1625 |
+
"epoch": 4.68,
|
1626 |
+
"learning_rate": 1.4088152885488504e-05,
|
1627 |
+
"loss": 0.1165,
|
1628 |
+
"step": 270
|
1629 |
+
},
|
1630 |
+
{
|
1631 |
+
"epoch": 4.69,
|
1632 |
+
"learning_rate": 1.4036147258805604e-05,
|
1633 |
+
"loss": 0.125,
|
1634 |
+
"step": 271
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"epoch": 4.71,
|
1638 |
+
"learning_rate": 1.3984010898462417e-05,
|
1639 |
+
"loss": 0.1209,
|
1640 |
+
"step": 272
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 4.73,
|
1644 |
+
"learning_rate": 1.3931745493192473e-05,
|
1645 |
+
"loss": 0.1205,
|
1646 |
+
"step": 273
|
1647 |
+
},
|
1648 |
+
{
|
1649 |
+
"epoch": 4.74,
|
1650 |
+
"learning_rate": 1.3879352735909163e-05,
|
1651 |
+
"loss": 0.1231,
|
1652 |
+
"step": 274
|
1653 |
+
},
|
1654 |
+
{
|
1655 |
+
"epoch": 4.76,
|
1656 |
+
"learning_rate": 1.3826834323650899e-05,
|
1657 |
+
"loss": 0.1197,
|
1658 |
+
"step": 275
|
1659 |
+
},
|
1660 |
+
{
|
1661 |
+
"epoch": 4.78,
|
1662 |
+
"learning_rate": 1.3774191957526144e-05,
|
1663 |
+
"loss": 0.1191,
|
1664 |
+
"step": 276
|
1665 |
+
},
|
1666 |
+
{
|
1667 |
+
"epoch": 4.8,
|
1668 |
+
"learning_rate": 1.3721427342658322e-05,
|
1669 |
+
"loss": 0.1205,
|
1670 |
+
"step": 277
|
1671 |
+
},
|
1672 |
+
{
|
1673 |
+
"epoch": 4.81,
|
1674 |
+
"learning_rate": 1.3668542188130567e-05,
|
1675 |
+
"loss": 0.1185,
|
1676 |
+
"step": 278
|
1677 |
+
},
|
1678 |
+
{
|
1679 |
+
"epoch": 4.83,
|
1680 |
+
"learning_rate": 1.3615538206930387e-05,
|
1681 |
+
"loss": 0.1214,
|
1682 |
+
"step": 279
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 4.85,
|
1686 |
+
"learning_rate": 1.356241711589417e-05,
|
1687 |
+
"loss": 0.1187,
|
1688 |
+
"step": 280
|
1689 |
+
},
|
1690 |
+
{
|
1691 |
+
"epoch": 4.87,
|
1692 |
+
"learning_rate": 1.350918063565157e-05,
|
1693 |
+
"loss": 0.1358,
|
1694 |
+
"step": 281
|
1695 |
+
},
|
1696 |
+
{
|
1697 |
+
"epoch": 4.88,
|
1698 |
+
"learning_rate": 1.3455830490569782e-05,
|
1699 |
+
"loss": 0.1283,
|
1700 |
+
"step": 282
|
1701 |
+
},
|
1702 |
+
{
|
1703 |
+
"epoch": 4.9,
|
1704 |
+
"learning_rate": 1.3402368408697681e-05,
|
1705 |
+
"loss": 0.1251,
|
1706 |
+
"step": 283
|
1707 |
+
},
|
1708 |
+
{
|
1709 |
+
"epoch": 4.92,
|
1710 |
+
"learning_rate": 1.3348796121709862e-05,
|
1711 |
+
"loss": 0.1201,
|
1712 |
+
"step": 284
|
1713 |
+
},
|
1714 |
+
{
|
1715 |
+
"epoch": 4.94,
|
1716 |
+
"learning_rate": 1.3295115364850535e-05,
|
1717 |
+
"loss": 0.1292,
|
1718 |
+
"step": 285
|
1719 |
+
},
|
1720 |
+
{
|
1721 |
+
"epoch": 4.95,
|
1722 |
+
"learning_rate": 1.3241327876877328e-05,
|
1723 |
+
"loss": 0.1245,
|
1724 |
+
"step": 286
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 4.97,
|
1728 |
+
"learning_rate": 1.318743540000496e-05,
|
1729 |
+
"loss": 0.127,
|
1730 |
+
"step": 287
|
1731 |
+
},
|
1732 |
+
{
|
1733 |
+
"epoch": 4.99,
|
1734 |
+
"learning_rate": 1.3133439679848824e-05,
|
1735 |
+
"loss": 0.1168,
|
1736 |
+
"step": 288
|
1737 |
+
},
|
1738 |
+
{
|
1739 |
+
"epoch": 5.0,
|
1740 |
+
"learning_rate": 1.307934246536843e-05,
|
1741 |
+
"loss": 0.115,
|
1742 |
+
"step": 289
|
1743 |
+
},
|
1744 |
+
{
|
1745 |
+
"epoch": 5.02,
|
1746 |
+
"learning_rate": 1.302514550881076e-05,
|
1747 |
+
"loss": 0.0562,
|
1748 |
+
"step": 290
|
1749 |
+
},
|
1750 |
+
{
|
1751 |
+
"epoch": 5.04,
|
1752 |
+
"learning_rate": 1.2970850565653515e-05,
|
1753 |
+
"loss": 0.0558,
|
1754 |
+
"step": 291
|
1755 |
+
},
|
1756 |
+
{
|
1757 |
+
"epoch": 5.06,
|
1758 |
+
"learning_rate": 1.291645939454825e-05,
|
1759 |
+
"loss": 0.0531,
|
1760 |
+
"step": 292
|
1761 |
+
},
|
1762 |
+
{
|
1763 |
+
"epoch": 5.07,
|
1764 |
+
"learning_rate": 1.2861973757263416e-05,
|
1765 |
+
"loss": 0.0496,
|
1766 |
+
"step": 293
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 5.09,
|
1770 |
+
"learning_rate": 1.2807395418627278e-05,
|
1771 |
+
"loss": 0.0512,
|
1772 |
+
"step": 294
|
1773 |
+
},
|
1774 |
+
{
|
1775 |
+
"epoch": 5.11,
|
1776 |
+
"learning_rate": 1.2752726146470775e-05,
|
1777 |
+
"loss": 0.0507,
|
1778 |
+
"step": 295
|
1779 |
+
},
|
1780 |
+
{
|
1781 |
+
"epoch": 5.13,
|
1782 |
+
"learning_rate": 1.2697967711570243e-05,
|
1783 |
+
"loss": 0.0527,
|
1784 |
+
"step": 296
|
1785 |
+
},
|
1786 |
+
{
|
1787 |
+
"epoch": 5.14,
|
1788 |
+
"learning_rate": 1.2643121887590064e-05,
|
1789 |
+
"loss": 0.0497,
|
1790 |
+
"step": 297
|
1791 |
+
},
|
1792 |
+
{
|
1793 |
+
"epoch": 5.16,
|
1794 |
+
"learning_rate": 1.2588190451025209e-05,
|
1795 |
+
"loss": 0.0467,
|
1796 |
+
"step": 298
|
1797 |
+
},
|
1798 |
+
{
|
1799 |
+
"epoch": 5.18,
|
1800 |
+
"learning_rate": 1.2533175181143704e-05,
|
1801 |
+
"loss": 0.0483,
|
1802 |
+
"step": 299
|
1803 |
+
},
|
1804 |
+
{
|
1805 |
+
"epoch": 5.19,
|
1806 |
+
"learning_rate": 1.2478077859929e-05,
|
1807 |
+
"loss": 0.0485,
|
1808 |
+
"step": 300
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 5.21,
|
1812 |
+
"learning_rate": 1.2422900272022242e-05,
|
1813 |
+
"loss": 0.0511,
|
1814 |
+
"step": 301
|
1815 |
+
},
|
1816 |
+
{
|
1817 |
+
"epoch": 5.23,
|
1818 |
+
"learning_rate": 1.2367644204664468e-05,
|
1819 |
+
"loss": 0.051,
|
1820 |
+
"step": 302
|
1821 |
+
},
|
1822 |
+
{
|
1823 |
+
"epoch": 5.25,
|
1824 |
+
"learning_rate": 1.2312311447638731e-05,
|
1825 |
+
"loss": 0.0477,
|
1826 |
+
"step": 303
|
1827 |
+
},
|
1828 |
+
{
|
1829 |
+
"epoch": 5.26,
|
1830 |
+
"learning_rate": 1.2256903793212107e-05,
|
1831 |
+
"loss": 0.0435,
|
1832 |
+
"step": 304
|
1833 |
+
},
|
1834 |
+
{
|
1835 |
+
"epoch": 5.28,
|
1836 |
+
"learning_rate": 1.2201423036077657e-05,
|
1837 |
+
"loss": 0.0508,
|
1838 |
+
"step": 305
|
1839 |
+
},
|
1840 |
+
{
|
1841 |
+
"epoch": 5.3,
|
1842 |
+
"learning_rate": 1.2145870973296288e-05,
|
1843 |
+
"loss": 0.0486,
|
1844 |
+
"step": 306
|
1845 |
+
},
|
1846 |
+
{
|
1847 |
+
"epoch": 5.32,
|
1848 |
+
"learning_rate": 1.2090249404238548e-05,
|
1849 |
+
"loss": 0.0475,
|
1850 |
+
"step": 307
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 5.33,
|
1854 |
+
"learning_rate": 1.2034560130526341e-05,
|
1855 |
+
"loss": 0.0465,
|
1856 |
+
"step": 308
|
1857 |
+
},
|
1858 |
+
{
|
1859 |
+
"epoch": 5.35,
|
1860 |
+
"learning_rate": 1.1978804955974573e-05,
|
1861 |
+
"loss": 0.0464,
|
1862 |
+
"step": 309
|
1863 |
+
},
|
1864 |
+
{
|
1865 |
+
"epoch": 5.37,
|
1866 |
+
"learning_rate": 1.1922985686532726e-05,
|
1867 |
+
"loss": 0.0467,
|
1868 |
+
"step": 310
|
1869 |
+
},
|
1870 |
+
{
|
1871 |
+
"epoch": 5.39,
|
1872 |
+
"learning_rate": 1.1867104130226363e-05,
|
1873 |
+
"loss": 0.0462,
|
1874 |
+
"step": 311
|
1875 |
+
},
|
1876 |
+
{
|
1877 |
+
"epoch": 5.4,
|
1878 |
+
"learning_rate": 1.1811162097098559e-05,
|
1879 |
+
"loss": 0.0499,
|
1880 |
+
"step": 312
|
1881 |
+
},
|
1882 |
+
{
|
1883 |
+
"epoch": 5.42,
|
1884 |
+
"learning_rate": 1.1755161399151277e-05,
|
1885 |
+
"loss": 0.0515,
|
1886 |
+
"step": 313
|
1887 |
+
},
|
1888 |
+
{
|
1889 |
+
"epoch": 5.44,
|
1890 |
+
"learning_rate": 1.1699103850286668e-05,
|
1891 |
+
"loss": 0.0473,
|
1892 |
+
"step": 314
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 5.45,
|
1896 |
+
"learning_rate": 1.1642991266248338e-05,
|
1897 |
+
"loss": 0.0467,
|
1898 |
+
"step": 315
|
1899 |
+
},
|
1900 |
+
{
|
1901 |
+
"epoch": 5.47,
|
1902 |
+
"learning_rate": 1.1586825464562515e-05,
|
1903 |
+
"loss": 0.0452,
|
1904 |
+
"step": 316
|
1905 |
+
},
|
1906 |
+
{
|
1907 |
+
"epoch": 5.49,
|
1908 |
+
"learning_rate": 1.153060826447918e-05,
|
1909 |
+
"loss": 0.0457,
|
1910 |
+
"step": 317
|
1911 |
+
},
|
1912 |
+
{
|
1913 |
+
"epoch": 5.51,
|
1914 |
+
"learning_rate": 1.1474341486913146e-05,
|
1915 |
+
"loss": 0.0459,
|
1916 |
+
"step": 318
|
1917 |
+
},
|
1918 |
+
{
|
1919 |
+
"epoch": 5.52,
|
1920 |
+
"learning_rate": 1.1418026954385082e-05,
|
1921 |
+
"loss": 0.0463,
|
1922 |
+
"step": 319
|
1923 |
+
},
|
1924 |
+
{
|
1925 |
+
"epoch": 5.54,
|
1926 |
+
"learning_rate": 1.1361666490962468e-05,
|
1927 |
+
"loss": 0.0453,
|
1928 |
+
"step": 320
|
1929 |
+
},
|
1930 |
+
{
|
1931 |
+
"epoch": 5.56,
|
1932 |
+
"learning_rate": 1.130526192220052e-05,
|
1933 |
+
"loss": 0.0497,
|
1934 |
+
"step": 321
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 5.58,
|
1938 |
+
"learning_rate": 1.1248815075083051e-05,
|
1939 |
+
"loss": 0.0488,
|
1940 |
+
"step": 322
|
1941 |
+
},
|
1942 |
+
{
|
1943 |
+
"epoch": 5.59,
|
1944 |
+
"learning_rate": 1.1192327777963313e-05,
|
1945 |
+
"loss": 0.0444,
|
1946 |
+
"step": 323
|
1947 |
+
},
|
1948 |
+
{
|
1949 |
+
"epoch": 5.61,
|
1950 |
+
"learning_rate": 1.113580186050475e-05,
|
1951 |
+
"loss": 0.049,
|
1952 |
+
"step": 324
|
1953 |
+
},
|
1954 |
+
{
|
1955 |
+
"epoch": 5.63,
|
1956 |
+
"learning_rate": 1.1079239153621753e-05,
|
1957 |
+
"loss": 0.0412,
|
1958 |
+
"step": 325
|
1959 |
+
},
|
1960 |
+
{
|
1961 |
+
"epoch": 5.65,
|
1962 |
+
"learning_rate": 1.1022641489420342e-05,
|
1963 |
+
"loss": 0.0475,
|
1964 |
+
"step": 326
|
1965 |
+
},
|
1966 |
+
{
|
1967 |
+
"epoch": 5.66,
|
1968 |
+
"learning_rate": 1.0966010701138841e-05,
|
1969 |
+
"loss": 0.0462,
|
1970 |
+
"step": 327
|
1971 |
+
},
|
1972 |
+
{
|
1973 |
+
"epoch": 5.68,
|
1974 |
+
"learning_rate": 1.0909348623088472e-05,
|
1975 |
+
"loss": 0.0453,
|
1976 |
+
"step": 328
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 5.7,
|
1980 |
+
"learning_rate": 1.0852657090593961e-05,
|
1981 |
+
"loss": 0.0469,
|
1982 |
+
"step": 329
|
1983 |
+
},
|
1984 |
+
{
|
1985 |
+
"epoch": 5.71,
|
1986 |
+
"learning_rate": 1.0795937939934088e-05,
|
1987 |
+
"loss": 0.0469,
|
1988 |
+
"step": 330
|
1989 |
+
},
|
1990 |
+
{
|
1991 |
+
"epoch": 5.73,
|
1992 |
+
"learning_rate": 1.0739193008282203e-05,
|
1993 |
+
"loss": 0.0446,
|
1994 |
+
"step": 331
|
1995 |
+
},
|
1996 |
+
{
|
1997 |
+
"epoch": 5.75,
|
1998 |
+
"learning_rate": 1.0682424133646712e-05,
|
1999 |
+
"loss": 0.0504,
|
2000 |
+
"step": 332
|
2001 |
+
},
|
2002 |
+
{
|
2003 |
+
"epoch": 5.77,
|
2004 |
+
"learning_rate": 1.062563315481156e-05,
|
2005 |
+
"loss": 0.0433,
|
2006 |
+
"step": 333
|
2007 |
+
},
|
2008 |
+
{
|
2009 |
+
"epoch": 5.78,
|
2010 |
+
"learning_rate": 1.056882191127667e-05,
|
2011 |
+
"loss": 0.0457,
|
2012 |
+
"step": 334
|
2013 |
+
},
|
2014 |
+
{
|
2015 |
+
"epoch": 5.8,
|
2016 |
+
"learning_rate": 1.0511992243198335e-05,
|
2017 |
+
"loss": 0.0474,
|
2018 |
+
"step": 335
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 5.82,
|
2022 |
+
"learning_rate": 1.0455145991329639e-05,
|
2023 |
+
"loss": 0.0439,
|
2024 |
+
"step": 336
|
2025 |
+
},
|
2026 |
+
{
|
2027 |
+
"epoch": 5.84,
|
2028 |
+
"learning_rate": 1.039828499696083e-05,
|
2029 |
+
"loss": 0.0423,
|
2030 |
+
"step": 337
|
2031 |
+
},
|
2032 |
+
{
|
2033 |
+
"epoch": 5.85,
|
2034 |
+
"learning_rate": 1.034141110185968e-05,
|
2035 |
+
"loss": 0.0468,
|
2036 |
+
"step": 338
|
2037 |
+
},
|
2038 |
+
{
|
2039 |
+
"epoch": 5.87,
|
2040 |
+
"learning_rate": 1.0284526148211815e-05,
|
2041 |
+
"loss": 0.0448,
|
2042 |
+
"step": 339
|
2043 |
+
},
|
2044 |
+
{
|
2045 |
+
"epoch": 5.89,
|
2046 |
+
"learning_rate": 1.0227631978561057e-05,
|
2047 |
+
"loss": 0.047,
|
2048 |
+
"step": 340
|
2049 |
+
},
|
2050 |
+
{
|
2051 |
+
"epoch": 5.9,
|
2052 |
+
"learning_rate": 1.017073043574975e-05,
|
2053 |
+
"loss": 0.0458,
|
2054 |
+
"step": 341
|
2055 |
+
},
|
2056 |
+
{
|
2057 |
+
"epoch": 5.92,
|
2058 |
+
"learning_rate": 1.0113823362859042e-05,
|
2059 |
+
"loss": 0.0461,
|
2060 |
+
"step": 342
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 5.94,
|
2064 |
+
"learning_rate": 1.0056912603149229e-05,
|
2065 |
+
"loss": 0.0469,
|
2066 |
+
"step": 343
|
2067 |
+
},
|
2068 |
+
{
|
2069 |
+
"epoch": 5.96,
|
2070 |
+
"learning_rate": 1e-05,
|
2071 |
+
"loss": 0.0479,
|
2072 |
+
"step": 344
|
2073 |
+
},
|
2074 |
+
{
|
2075 |
+
"epoch": 5.97,
|
2076 |
+
"learning_rate": 9.943087396850773e-06,
|
2077 |
+
"loss": 0.047,
|
2078 |
+
"step": 345
|
2079 |
+
},
|
2080 |
+
{
|
2081 |
+
"epoch": 5.99,
|
2082 |
+
"learning_rate": 9.886176637140959e-06,
|
2083 |
+
"loss": 0.046,
|
2084 |
+
"step": 346
|
2085 |
+
},
|
2086 |
+
{
|
2087 |
+
"epoch": 6.01,
|
2088 |
+
"learning_rate": 9.829269564250254e-06,
|
2089 |
+
"loss": 0.0313,
|
2090 |
+
"step": 347
|
2091 |
+
},
|
2092 |
+
{
|
2093 |
+
"epoch": 6.03,
|
2094 |
+
"learning_rate": 9.772368021438943e-06,
|
2095 |
+
"loss": 0.0222,
|
2096 |
+
"step": 348
|
2097 |
+
},
|
2098 |
+
{
|
2099 |
+
"epoch": 6.04,
|
2100 |
+
"learning_rate": 9.715473851788187e-06,
|
2101 |
+
"loss": 0.0215,
|
2102 |
+
"step": 349
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 6.06,
|
2106 |
+
"learning_rate": 9.658588898140322e-06,
|
2107 |
+
"loss": 0.0218,
|
2108 |
+
"step": 350
|
2109 |
+
},
|
2110 |
+
{
|
2111 |
+
"epoch": 6.08,
|
2112 |
+
"learning_rate": 9.601715003039174e-06,
|
2113 |
+
"loss": 0.0204,
|
2114 |
+
"step": 351
|
2115 |
+
},
|
2116 |
+
{
|
2117 |
+
"epoch": 6.1,
|
2118 |
+
"learning_rate": 9.544854008670366e-06,
|
2119 |
+
"loss": 0.019,
|
2120 |
+
"step": 352
|
2121 |
+
},
|
2122 |
+
{
|
2123 |
+
"epoch": 6.11,
|
2124 |
+
"learning_rate": 9.488007756801672e-06,
|
2125 |
+
"loss": 0.0204,
|
2126 |
+
"step": 353
|
2127 |
+
},
|
2128 |
+
{
|
2129 |
+
"epoch": 6.13,
|
2130 |
+
"learning_rate": 9.431178088723334e-06,
|
2131 |
+
"loss": 0.0194,
|
2132 |
+
"step": 354
|
2133 |
+
},
|
2134 |
+
{
|
2135 |
+
"epoch": 6.15,
|
2136 |
+
"learning_rate": 9.374366845188441e-06,
|
2137 |
+
"loss": 0.0186,
|
2138 |
+
"step": 355
|
2139 |
+
},
|
2140 |
+
{
|
2141 |
+
"epoch": 6.16,
|
2142 |
+
"learning_rate": 9.317575866353293e-06,
|
2143 |
+
"loss": 0.0175,
|
2144 |
+
"step": 356
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 6.18,
|
2148 |
+
"learning_rate": 9.260806991717802e-06,
|
2149 |
+
"loss": 0.0192,
|
2150 |
+
"step": 357
|
2151 |
+
},
|
2152 |
+
{
|
2153 |
+
"epoch": 6.2,
|
2154 |
+
"learning_rate": 9.204062060065915e-06,
|
2155 |
+
"loss": 0.0171,
|
2156 |
+
"step": 358
|
2157 |
+
},
|
2158 |
+
{
|
2159 |
+
"epoch": 6.22,
|
2160 |
+
"learning_rate": 9.14734290940604e-06,
|
2161 |
+
"loss": 0.0165,
|
2162 |
+
"step": 359
|
2163 |
+
},
|
2164 |
+
{
|
2165 |
+
"epoch": 6.23,
|
2166 |
+
"learning_rate": 9.090651376911532e-06,
|
2167 |
+
"loss": 0.0196,
|
2168 |
+
"step": 360
|
2169 |
+
},
|
2170 |
+
{
|
2171 |
+
"epoch": 6.25,
|
2172 |
+
"learning_rate": 9.033989298861162e-06,
|
2173 |
+
"loss": 0.0185,
|
2174 |
+
"step": 361
|
2175 |
+
},
|
2176 |
+
{
|
2177 |
+
"epoch": 6.27,
|
2178 |
+
"learning_rate": 8.977358510579658e-06,
|
2179 |
+
"loss": 0.0181,
|
2180 |
+
"step": 362
|
2181 |
+
},
|
2182 |
+
{
|
2183 |
+
"epoch": 6.29,
|
2184 |
+
"learning_rate": 8.920760846378248e-06,
|
2185 |
+
"loss": 0.0191,
|
2186 |
+
"step": 363
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 6.3,
|
2190 |
+
"learning_rate": 8.86419813949525e-06,
|
2191 |
+
"loss": 0.0193,
|
2192 |
+
"step": 364
|
2193 |
+
},
|
2194 |
+
{
|
2195 |
+
"epoch": 6.32,
|
2196 |
+
"learning_rate": 8.807672222036692e-06,
|
2197 |
+
"loss": 0.0186,
|
2198 |
+
"step": 365
|
2199 |
+
},
|
2200 |
+
{
|
2201 |
+
"epoch": 6.34,
|
2202 |
+
"learning_rate": 8.751184924916954e-06,
|
2203 |
+
"loss": 0.0184,
|
2204 |
+
"step": 366
|
2205 |
+
},
|
2206 |
+
{
|
2207 |
+
"epoch": 6.35,
|
2208 |
+
"learning_rate": 8.694738077799487e-06,
|
2209 |
+
"loss": 0.0183,
|
2210 |
+
"step": 367
|
2211 |
+
},
|
2212 |
+
{
|
2213 |
+
"epoch": 6.37,
|
2214 |
+
"learning_rate": 8.638333509037537e-06,
|
2215 |
+
"loss": 0.0183,
|
2216 |
+
"step": 368
|
2217 |
+
},
|
2218 |
+
{
|
2219 |
+
"epoch": 6.39,
|
2220 |
+
"learning_rate": 8.58197304561492e-06,
|
2221 |
+
"loss": 0.0201,
|
2222 |
+
"step": 369
|
2223 |
+
},
|
2224 |
+
{
|
2225 |
+
"epoch": 6.41,
|
2226 |
+
"learning_rate": 8.525658513086857e-06,
|
2227 |
+
"loss": 0.0183,
|
2228 |
+
"step": 370
|
2229 |
+
},
|
2230 |
+
{
|
2231 |
+
"epoch": 6.42,
|
2232 |
+
"learning_rate": 8.469391735520824e-06,
|
2233 |
+
"loss": 0.0185,
|
2234 |
+
"step": 371
|
2235 |
+
},
|
2236 |
+
{
|
2237 |
+
"epoch": 6.44,
|
2238 |
+
"learning_rate": 8.413174535437486e-06,
|
2239 |
+
"loss": 0.0178,
|
2240 |
+
"step": 372
|
2241 |
+
},
|
2242 |
+
{
|
2243 |
+
"epoch": 6.46,
|
2244 |
+
"learning_rate": 8.357008733751664e-06,
|
2245 |
+
"loss": 0.0184,
|
2246 |
+
"step": 373
|
2247 |
+
},
|
2248 |
+
{
|
2249 |
+
"epoch": 6.48,
|
2250 |
+
"learning_rate": 8.300896149713334e-06,
|
2251 |
+
"loss": 0.0176,
|
2252 |
+
"step": 374
|
2253 |
+
},
|
2254 |
+
{
|
2255 |
+
"epoch": 6.49,
|
2256 |
+
"learning_rate": 8.244838600848727e-06,
|
2257 |
+
"loss": 0.0169,
|
2258 |
+
"step": 375
|
2259 |
+
},
|
2260 |
+
{
|
2261 |
+
"epoch": 6.51,
|
2262 |
+
"learning_rate": 8.188837902901441e-06,
|
2263 |
+
"loss": 0.0182,
|
2264 |
+
"step": 376
|
2265 |
+
},
|
2266 |
+
{
|
2267 |
+
"epoch": 6.53,
|
2268 |
+
"learning_rate": 8.132895869773638e-06,
|
2269 |
+
"loss": 0.0199,
|
2270 |
+
"step": 377
|
2271 |
+
},
|
2272 |
+
{
|
2273 |
+
"epoch": 6.55,
|
2274 |
+
"learning_rate": 8.077014313467274e-06,
|
2275 |
+
"loss": 0.0179,
|
2276 |
+
"step": 378
|
2277 |
+
},
|
2278 |
+
{
|
2279 |
+
"epoch": 6.56,
|
2280 |
+
"learning_rate": 8.021195044025432e-06,
|
2281 |
+
"loss": 0.0154,
|
2282 |
+
"step": 379
|
2283 |
+
},
|
2284 |
+
{
|
2285 |
+
"epoch": 6.58,
|
2286 |
+
"learning_rate": 7.965439869473664e-06,
|
2287 |
+
"loss": 0.0173,
|
2288 |
+
"step": 380
|
2289 |
+
},
|
2290 |
+
{
|
2291 |
+
"epoch": 6.6,
|
2292 |
+
"learning_rate": 7.909750595761459e-06,
|
2293 |
+
"loss": 0.0178,
|
2294 |
+
"step": 381
|
2295 |
+
},
|
2296 |
+
{
|
2297 |
+
"epoch": 6.61,
|
2298 |
+
"learning_rate": 7.854129026703716e-06,
|
2299 |
+
"loss": 0.0175,
|
2300 |
+
"step": 382
|
2301 |
+
},
|
2302 |
+
{
|
2303 |
+
"epoch": 6.63,
|
2304 |
+
"learning_rate": 7.798576963922347e-06,
|
2305 |
+
"loss": 0.0204,
|
2306 |
+
"step": 383
|
2307 |
+
},
|
2308 |
+
{
|
2309 |
+
"epoch": 6.65,
|
2310 |
+
"learning_rate": 7.743096206787894e-06,
|
2311 |
+
"loss": 0.0164,
|
2312 |
+
"step": 384
|
2313 |
+
},
|
2314 |
+
{
|
2315 |
+
"epoch": 6.67,
|
2316 |
+
"learning_rate": 7.687688552361272e-06,
|
2317 |
+
"loss": 0.0168,
|
2318 |
+
"step": 385
|
2319 |
+
},
|
2320 |
+
{
|
2321 |
+
"epoch": 6.68,
|
2322 |
+
"learning_rate": 7.632355795335533e-06,
|
2323 |
+
"loss": 0.0171,
|
2324 |
+
"step": 386
|
2325 |
+
},
|
2326 |
+
{
|
2327 |
+
"epoch": 6.7,
|
2328 |
+
"learning_rate": 7.577099727977762e-06,
|
2329 |
+
"loss": 0.018,
|
2330 |
+
"step": 387
|
2331 |
+
},
|
2332 |
+
{
|
2333 |
+
"epoch": 6.72,
|
2334 |
+
"learning_rate": 7.521922140071003e-06,
|
2335 |
+
"loss": 0.019,
|
2336 |
+
"step": 388
|
2337 |
+
},
|
2338 |
+
{
|
2339 |
+
"epoch": 6.74,
|
2340 |
+
"learning_rate": 7.466824818856296e-06,
|
2341 |
+
"loss": 0.0174,
|
2342 |
+
"step": 389
|
2343 |
+
},
|
2344 |
+
{
|
2345 |
+
"epoch": 6.75,
|
2346 |
+
"learning_rate": 7.411809548974792e-06,
|
2347 |
+
"loss": 0.0189,
|
2348 |
+
"step": 390
|
2349 |
+
},
|
2350 |
+
{
|
2351 |
+
"epoch": 6.77,
|
2352 |
+
"learning_rate": 7.356878112409936e-06,
|
2353 |
+
"loss": 0.0194,
|
2354 |
+
"step": 391
|
2355 |
+
},
|
2356 |
+
{
|
2357 |
+
"epoch": 6.79,
|
2358 |
+
"learning_rate": 7.3020322884297565e-06,
|
2359 |
+
"loss": 0.0163,
|
2360 |
+
"step": 392
|
2361 |
+
},
|
2362 |
+
{
|
2363 |
+
"epoch": 6.81,
|
2364 |
+
"learning_rate": 7.2472738535292295e-06,
|
2365 |
+
"loss": 0.0175,
|
2366 |
+
"step": 393
|
2367 |
+
},
|
2368 |
+
{
|
2369 |
+
"epoch": 6.82,
|
2370 |
+
"learning_rate": 7.192604581372727e-06,
|
2371 |
+
"loss": 0.0174,
|
2372 |
+
"step": 394
|
2373 |
+
},
|
2374 |
+
{
|
2375 |
+
"epoch": 6.84,
|
2376 |
+
"learning_rate": 7.1380262427365885e-06,
|
2377 |
+
"loss": 0.0173,
|
2378 |
+
"step": 395
|
2379 |
+
},
|
2380 |
+
{
|
2381 |
+
"epoch": 6.86,
|
2382 |
+
"learning_rate": 7.0835406054517505e-06,
|
2383 |
+
"loss": 0.0181,
|
2384 |
+
"step": 396
|
2385 |
+
},
|
2386 |
+
{
|
2387 |
+
"epoch": 6.87,
|
2388 |
+
"learning_rate": 7.0291494343464896e-06,
|
2389 |
+
"loss": 0.0163,
|
2390 |
+
"step": 397
|
2391 |
+
},
|
2392 |
+
{
|
2393 |
+
"epoch": 6.89,
|
2394 |
+
"learning_rate": 6.974854491189243e-06,
|
2395 |
+
"loss": 0.0191,
|
2396 |
+
"step": 398
|
2397 |
+
},
|
2398 |
+
{
|
2399 |
+
"epoch": 6.91,
|
2400 |
+
"learning_rate": 6.920657534631573e-06,
|
2401 |
+
"loss": 0.0175,
|
2402 |
+
"step": 399
|
2403 |
+
},
|
2404 |
+
{
|
2405 |
+
"epoch": 6.93,
|
2406 |
+
"learning_rate": 6.866560320151179e-06,
|
2407 |
+
"loss": 0.0174,
|
2408 |
+
"step": 400
|
2409 |
+
},
|
2410 |
+
{
|
2411 |
+
"epoch": 6.94,
|
2412 |
+
"learning_rate": 6.812564599995042e-06,
|
2413 |
+
"loss": 0.0167,
|
2414 |
+
"step": 401
|
2415 |
+
},
|
2416 |
+
{
|
2417 |
+
"epoch": 6.96,
|
2418 |
+
"learning_rate": 6.758672123122675e-06,
|
2419 |
+
"loss": 0.0185,
|
2420 |
+
"step": 402
|
2421 |
+
},
|
2422 |
+
{
|
2423 |
+
"epoch": 6.98,
|
2424 |
+
"learning_rate": 6.704884635149467e-06,
|
2425 |
+
"loss": 0.0167,
|
2426 |
+
"step": 403
|
2427 |
+
},
|
2428 |
+
{
|
2429 |
+
"epoch": 7.0,
|
2430 |
+
"learning_rate": 6.651203878290139e-06,
|
2431 |
+
"loss": 0.0174,
|
2432 |
+
"step": 404
|
2433 |
+
},
|
2434 |
+
{
|
2435 |
+
"epoch": 7.01,
|
2436 |
+
"learning_rate": 6.597631591302319e-06,
|
2437 |
+
"loss": 0.0104,
|
2438 |
+
"step": 405
|
2439 |
+
},
|
2440 |
+
{
|
2441 |
+
"epoch": 7.03,
|
2442 |
+
"learning_rate": 6.544169509430219e-06,
|
2443 |
+
"loss": 0.0085,
|
2444 |
+
"step": 406
|
2445 |
+
},
|
2446 |
+
{
|
2447 |
+
"epoch": 7.05,
|
2448 |
+
"learning_rate": 6.490819364348434e-06,
|
2449 |
+
"loss": 0.0089,
|
2450 |
+
"step": 407
|
2451 |
+
},
|
2452 |
+
{
|
2453 |
+
"epoch": 7.06,
|
2454 |
+
"learning_rate": 6.437582884105835e-06,
|
2455 |
+
"loss": 0.0092,
|
2456 |
+
"step": 408
|
2457 |
+
},
|
2458 |
+
{
|
2459 |
+
"epoch": 7.08,
|
2460 |
+
"learning_rate": 6.384461793069616e-06,
|
2461 |
+
"loss": 0.0083,
|
2462 |
+
"step": 409
|
2463 |
+
},
|
2464 |
+
{
|
2465 |
+
"epoch": 7.1,
|
2466 |
+
"learning_rate": 6.331457811869437e-06,
|
2467 |
+
"loss": 0.0088,
|
2468 |
+
"step": 410
|
2469 |
+
},
|
2470 |
+
{
|
2471 |
+
"epoch": 7.12,
|
2472 |
+
"learning_rate": 6.278572657341682e-06,
|
2473 |
+
"loss": 0.0084,
|
2474 |
+
"step": 411
|
2475 |
+
},
|
2476 |
+
{
|
2477 |
+
"epoch": 7.13,
|
2478 |
+
"learning_rate": 6.225808042473857e-06,
|
2479 |
+
"loss": 0.0089,
|
2480 |
+
"step": 412
|
2481 |
+
},
|
2482 |
+
{
|
2483 |
+
"epoch": 7.15,
|
2484 |
+
"learning_rate": 6.173165676349103e-06,
|
2485 |
+
"loss": 0.0078,
|
2486 |
+
"step": 413
|
2487 |
+
},
|
2488 |
+
{
|
2489 |
+
"epoch": 7.17,
|
2490 |
+
"learning_rate": 6.120647264090839e-06,
|
2491 |
+
"loss": 0.0073,
|
2492 |
+
"step": 414
|
2493 |
+
},
|
2494 |
+
{
|
2495 |
+
"epoch": 7.19,
|
2496 |
+
"learning_rate": 6.0682545068075315e-06,
|
2497 |
+
"loss": 0.0088,
|
2498 |
+
"step": 415
|
2499 |
+
},
|
2500 |
+
{
|
2501 |
+
"epoch": 7.2,
|
2502 |
+
"learning_rate": 6.015989101537586e-06,
|
2503 |
+
"loss": 0.0071,
|
2504 |
+
"step": 416
|
2505 |
+
},
|
2506 |
+
{
|
2507 |
+
"epoch": 7.22,
|
2508 |
+
"learning_rate": 5.963852741194397e-06,
|
2509 |
+
"loss": 0.0085,
|
2510 |
+
"step": 417
|
2511 |
+
},
|
2512 |
+
{
|
2513 |
+
"epoch": 7.24,
|
2514 |
+
"learning_rate": 5.911847114511497e-06,
|
2515 |
+
"loss": 0.0079,
|
2516 |
+
"step": 418
|
2517 |
+
},
|
2518 |
+
{
|
2519 |
+
"epoch": 7.26,
|
2520 |
+
"learning_rate": 5.859973905987866e-06,
|
2521 |
+
"loss": 0.0077,
|
2522 |
+
"step": 419
|
2523 |
+
},
|
2524 |
+
{
|
2525 |
+
"epoch": 7.27,
|
2526 |
+
"learning_rate": 5.8082347958333625e-06,
|
2527 |
+
"loss": 0.0085,
|
2528 |
+
"step": 420
|
2529 |
+
},
|
2530 |
+
{
|
2531 |
+
"epoch": 7.29,
|
2532 |
+
"learning_rate": 5.756631459914302e-06,
|
2533 |
+
"loss": 0.008,
|
2534 |
+
"step": 421
|
2535 |
+
},
|
2536 |
+
{
|
2537 |
+
"epoch": 7.31,
|
2538 |
+
"learning_rate": 5.7051655696991825e-06,
|
2539 |
+
"loss": 0.0072,
|
2540 |
+
"step": 422
|
2541 |
+
},
|
2542 |
+
{
|
2543 |
+
"epoch": 7.32,
|
2544 |
+
"learning_rate": 5.653838792204538e-06,
|
2545 |
+
"loss": 0.0072,
|
2546 |
+
"step": 423
|
2547 |
+
},
|
2548 |
+
{
|
2549 |
+
"epoch": 7.34,
|
2550 |
+
"learning_rate": 5.602652789940941e-06,
|
2551 |
+
"loss": 0.0075,
|
2552 |
+
"step": 424
|
2553 |
+
},
|
2554 |
+
{
|
2555 |
+
"epoch": 7.36,
|
2556 |
+
"learning_rate": 5.55160922085916e-06,
|
2557 |
+
"loss": 0.0086,
|
2558 |
+
"step": 425
|
2559 |
+
},
|
2560 |
+
{
|
2561 |
+
"epoch": 7.38,
|
2562 |
+
"learning_rate": 5.50070973829644e-06,
|
2563 |
+
"loss": 0.0064,
|
2564 |
+
"step": 426
|
2565 |
+
},
|
2566 |
+
{
|
2567 |
+
"epoch": 7.39,
|
2568 |
+
"learning_rate": 5.449955990922973e-06,
|
2569 |
+
"loss": 0.0087,
|
2570 |
+
"step": 427
|
2571 |
+
},
|
2572 |
+
{
|
2573 |
+
"epoch": 7.41,
|
2574 |
+
"learning_rate": 5.399349622688479e-06,
|
2575 |
+
"loss": 0.0077,
|
2576 |
+
"step": 428
|
2577 |
+
},
|
2578 |
+
{
|
2579 |
+
"epoch": 7.43,
|
2580 |
+
"learning_rate": 5.348892272768972e-06,
|
2581 |
+
"loss": 0.0071,
|
2582 |
+
"step": 429
|
2583 |
+
},
|
2584 |
+
{
|
2585 |
+
"epoch": 7.45,
|
2586 |
+
"learning_rate": 5.298585575513649e-06,
|
2587 |
+
"loss": 0.0073,
|
2588 |
+
"step": 430
|
2589 |
+
},
|
2590 |
+
{
|
2591 |
+
"epoch": 7.46,
|
2592 |
+
"learning_rate": 5.248431160391963e-06,
|
2593 |
+
"loss": 0.0067,
|
2594 |
+
"step": 431
|
2595 |
+
},
|
2596 |
+
{
|
2597 |
+
"epoch": 7.48,
|
2598 |
+
"learning_rate": 5.198430651940846e-06,
|
2599 |
+
"loss": 0.0072,
|
2600 |
+
"step": 432
|
2601 |
+
},
|
2602 |
+
{
|
2603 |
+
"epoch": 7.5,
|
2604 |
+
"learning_rate": 5.148585669712074e-06,
|
2605 |
+
"loss": 0.0071,
|
2606 |
+
"step": 433
|
2607 |
+
},
|
2608 |
+
{
|
2609 |
+
"epoch": 7.52,
|
2610 |
+
"learning_rate": 5.098897828219831e-06,
|
2611 |
+
"loss": 0.0078,
|
2612 |
+
"step": 434
|
2613 |
+
},
|
2614 |
+
{
|
2615 |
+
"epoch": 7.53,
|
2616 |
+
"learning_rate": 5.049368736888391e-06,
|
2617 |
+
"loss": 0.0075,
|
2618 |
+
"step": 435
|
2619 |
+
},
|
2620 |
+
{
|
2621 |
+
"epoch": 7.55,
|
2622 |
+
"learning_rate": 5.000000000000003e-06,
|
2623 |
+
"loss": 0.0068,
|
2624 |
+
"step": 436
|
2625 |
+
},
|
2626 |
+
{
|
2627 |
+
"epoch": 7.57,
|
2628 |
+
"learning_rate": 4.950793216642923e-06,
|
2629 |
+
"loss": 0.0075,
|
2630 |
+
"step": 437
|
2631 |
+
},
|
2632 |
+
{
|
2633 |
+
"epoch": 7.58,
|
2634 |
+
"learning_rate": 4.901749980659617e-06,
|
2635 |
+
"loss": 0.0072,
|
2636 |
+
"step": 438
|
2637 |
+
},
|
2638 |
+
{
|
2639 |
+
"epoch": 7.6,
|
2640 |
+
"learning_rate": 4.852871880595137e-06,
|
2641 |
+
"loss": 0.0063,
|
2642 |
+
"step": 439
|
2643 |
+
},
|
2644 |
+
{
|
2645 |
+
"epoch": 7.62,
|
2646 |
+
"learning_rate": 4.804160499645667e-06,
|
2647 |
+
"loss": 0.0073,
|
2648 |
+
"step": 440
|
2649 |
+
},
|
2650 |
+
{
|
2651 |
+
"epoch": 7.64,
|
2652 |
+
"learning_rate": 4.755617415607232e-06,
|
2653 |
+
"loss": 0.0075,
|
2654 |
+
"step": 441
|
2655 |
+
},
|
2656 |
+
{
|
2657 |
+
"epoch": 7.65,
|
2658 |
+
"learning_rate": 4.7072442008246135e-06,
|
2659 |
+
"loss": 0.0075,
|
2660 |
+
"step": 442
|
2661 |
+
},
|
2662 |
+
{
|
2663 |
+
"epoch": 7.67,
|
2664 |
+
"learning_rate": 4.659042422140399e-06,
|
2665 |
+
"loss": 0.0079,
|
2666 |
+
"step": 443
|
2667 |
+
},
|
2668 |
+
{
|
2669 |
+
"epoch": 7.69,
|
2670 |
+
"learning_rate": 4.611013640844245e-06,
|
2671 |
+
"loss": 0.0067,
|
2672 |
+
"step": 444
|
2673 |
+
},
|
2674 |
+
{
|
2675 |
+
"epoch": 7.71,
|
2676 |
+
"learning_rate": 4.5631594126223e-06,
|
2677 |
+
"loss": 0.0072,
|
2678 |
+
"step": 445
|
2679 |
+
},
|
2680 |
+
{
|
2681 |
+
"epoch": 7.72,
|
2682 |
+
"learning_rate": 4.515481287506811e-06,
|
2683 |
+
"loss": 0.0081,
|
2684 |
+
"step": 446
|
2685 |
+
},
|
2686 |
+
{
|
2687 |
+
"epoch": 7.74,
|
2688 |
+
"learning_rate": 4.4679808098259295e-06,
|
2689 |
+
"loss": 0.0071,
|
2690 |
+
"step": 447
|
2691 |
+
},
|
2692 |
+
{
|
2693 |
+
"epoch": 7.76,
|
2694 |
+
"learning_rate": 4.420659518153667e-06,
|
2695 |
+
"loss": 0.0075,
|
2696 |
+
"step": 448
|
2697 |
+
},
|
2698 |
+
{
|
2699 |
+
"epoch": 7.77,
|
2700 |
+
"learning_rate": 4.37351894526009e-06,
|
2701 |
+
"loss": 0.0073,
|
2702 |
+
"step": 449
|
2703 |
+
},
|
2704 |
+
{
|
2705 |
+
"epoch": 7.79,
|
2706 |
+
"learning_rate": 4.326560618061639e-06,
|
2707 |
+
"loss": 0.007,
|
2708 |
+
"step": 450
|
2709 |
+
},
|
2710 |
+
{
|
2711 |
+
"epoch": 7.81,
|
2712 |
+
"learning_rate": 4.279786057571703e-06,
|
2713 |
+
"loss": 0.0079,
|
2714 |
+
"step": 451
|
2715 |
+
},
|
2716 |
+
{
|
2717 |
+
"epoch": 7.83,
|
2718 |
+
"learning_rate": 4.2331967788513295e-06,
|
2719 |
+
"loss": 0.0075,
|
2720 |
+
"step": 452
|
2721 |
+
},
|
2722 |
+
{
|
2723 |
+
"epoch": 7.84,
|
2724 |
+
"learning_rate": 4.186794290960162e-06,
|
2725 |
+
"loss": 0.0067,
|
2726 |
+
"step": 453
|
2727 |
+
},
|
2728 |
+
{
|
2729 |
+
"epoch": 7.86,
|
2730 |
+
"learning_rate": 4.140580096907554e-06,
|
2731 |
+
"loss": 0.0058,
|
2732 |
+
"step": 454
|
2733 |
+
},
|
2734 |
+
{
|
2735 |
+
"epoch": 7.88,
|
2736 |
+
"learning_rate": 4.094555693603891e-06,
|
2737 |
+
"loss": 0.0076,
|
2738 |
+
"step": 455
|
2739 |
+
},
|
2740 |
+
{
|
2741 |
+
"epoch": 7.9,
|
2742 |
+
"learning_rate": 4.048722571812105e-06,
|
2743 |
+
"loss": 0.0075,
|
2744 |
+
"step": 456
|
2745 |
+
},
|
2746 |
+
{
|
2747 |
+
"epoch": 7.91,
|
2748 |
+
"learning_rate": 4.003082216099374e-06,
|
2749 |
+
"loss": 0.007,
|
2750 |
+
"step": 457
|
2751 |
+
},
|
2752 |
+
{
|
2753 |
+
"epoch": 7.93,
|
2754 |
+
"learning_rate": 3.957636104789056e-06,
|
2755 |
+
"loss": 0.0065,
|
2756 |
+
"step": 458
|
2757 |
+
},
|
2758 |
+
{
|
2759 |
+
"epoch": 7.95,
|
2760 |
+
"learning_rate": 3.912385709912794e-06,
|
2761 |
+
"loss": 0.0077,
|
2762 |
+
"step": 459
|
2763 |
+
},
|
2764 |
+
{
|
2765 |
+
"epoch": 7.97,
|
2766 |
+
"learning_rate": 3.867332497162836e-06,
|
2767 |
+
"loss": 0.0072,
|
2768 |
+
"step": 460
|
2769 |
+
},
|
2770 |
+
{
|
2771 |
+
"epoch": 7.98,
|
2772 |
+
"learning_rate": 3.822477925844564e-06,
|
2773 |
+
"loss": 0.0077,
|
2774 |
+
"step": 461
|
2775 |
+
},
|
2776 |
+
{
|
2777 |
+
"epoch": 8.0,
|
2778 |
+
"learning_rate": 3.777823448829224e-06,
|
2779 |
+
"loss": 0.0066,
|
2780 |
+
"step": 462
|
2781 |
+
},
|
2782 |
+
{
|
2783 |
+
"epoch": 8.02,
|
2784 |
+
"learning_rate": 3.7333705125068576e-06,
|
2785 |
+
"loss": 0.0041,
|
2786 |
+
"step": 463
|
2787 |
+
},
|
2788 |
+
{
|
2789 |
+
"epoch": 8.03,
|
2790 |
+
"learning_rate": 3.689120556739475e-06,
|
2791 |
+
"loss": 0.0048,
|
2792 |
+
"step": 464
|
2793 |
+
},
|
2794 |
+
{
|
2795 |
+
"epoch": 8.05,
|
2796 |
+
"learning_rate": 3.6450750148143886e-06,
|
2797 |
+
"loss": 0.0035,
|
2798 |
+
"step": 465
|
2799 |
+
},
|
2800 |
+
{
|
2801 |
+
"epoch": 8.07,
|
2802 |
+
"learning_rate": 3.601235313397813e-06,
|
2803 |
+
"loss": 0.0045,
|
2804 |
+
"step": 466
|
2805 |
+
},
|
2806 |
+
{
|
2807 |
+
"epoch": 8.09,
|
2808 |
+
"learning_rate": 3.557602872488638e-06,
|
2809 |
+
"loss": 0.0041,
|
2810 |
+
"step": 467
|
2811 |
+
},
|
2812 |
+
{
|
2813 |
+
"epoch": 8.1,
|
2814 |
+
"learning_rate": 3.5141791053724405e-06,
|
2815 |
+
"loss": 0.0042,
|
2816 |
+
"step": 468
|
2817 |
+
},
|
2818 |
+
{
|
2819 |
+
"epoch": 8.12,
|
2820 |
+
"learning_rate": 3.470965418575708e-06,
|
2821 |
+
"loss": 0.004,
|
2822 |
+
"step": 469
|
2823 |
+
},
|
2824 |
+
{
|
2825 |
+
"epoch": 8.14,
|
2826 |
+
"learning_rate": 3.4279632118202744e-06,
|
2827 |
+
"loss": 0.0039,
|
2828 |
+
"step": 470
|
2829 |
+
},
|
2830 |
+
{
|
2831 |
+
"epoch": 8.16,
|
2832 |
+
"learning_rate": 3.385173877977991e-06,
|
2833 |
+
"loss": 0.0039,
|
2834 |
+
"step": 471
|
2835 |
+
},
|
2836 |
+
{
|
2837 |
+
"epoch": 8.17,
|
2838 |
+
"learning_rate": 3.342598803025595e-06,
|
2839 |
+
"loss": 0.004,
|
2840 |
+
"step": 472
|
2841 |
+
},
|
2842 |
+
{
|
2843 |
+
"epoch": 8.19,
|
2844 |
+
"learning_rate": 3.3002393659998357e-06,
|
2845 |
+
"loss": 0.0039,
|
2846 |
+
"step": 473
|
2847 |
+
},
|
2848 |
+
{
|
2849 |
+
"epoch": 8.21,
|
2850 |
+
"learning_rate": 3.258096938952796e-06,
|
2851 |
+
"loss": 0.0036,
|
2852 |
+
"step": 474
|
2853 |
+
},
|
2854 |
+
{
|
2855 |
+
"epoch": 8.23,
|
2856 |
+
"learning_rate": 3.2161728869074517e-06,
|
2857 |
+
"loss": 0.0033,
|
2858 |
+
"step": 475
|
2859 |
+
},
|
2860 |
+
{
|
2861 |
+
"epoch": 8.24,
|
2862 |
+
"learning_rate": 3.174468567813461e-06,
|
2863 |
+
"loss": 0.0037,
|
2864 |
+
"step": 476
|
2865 |
+
},
|
2866 |
+
{
|
2867 |
+
"epoch": 8.26,
|
2868 |
+
"learning_rate": 3.132985332503167e-06,
|
2869 |
+
"loss": 0.0031,
|
2870 |
+
"step": 477
|
2871 |
+
},
|
2872 |
+
{
|
2873 |
+
"epoch": 8.28,
|
2874 |
+
"learning_rate": 3.091724524647861e-06,
|
2875 |
+
"loss": 0.0043,
|
2876 |
+
"step": 478
|
2877 |
+
},
|
2878 |
+
{
|
2879 |
+
"epoch": 8.29,
|
2880 |
+
"learning_rate": 3.050687480714256e-06,
|
2881 |
+
"loss": 0.0034,
|
2882 |
+
"step": 479
|
2883 |
+
},
|
2884 |
+
{
|
2885 |
+
"epoch": 8.31,
|
2886 |
+
"learning_rate": 3.009875529921181e-06,
|
2887 |
+
"loss": 0.0037,
|
2888 |
+
"step": 480
|
2889 |
+
},
|
2890 |
+
{
|
2891 |
+
"epoch": 8.33,
|
2892 |
+
"learning_rate": 2.9692899941965493e-06,
|
2893 |
+
"loss": 0.004,
|
2894 |
+
"step": 481
|
2895 |
+
},
|
2896 |
+
{
|
2897 |
+
"epoch": 8.35,
|
2898 |
+
"learning_rate": 2.9289321881345257e-06,
|
2899 |
+
"loss": 0.0039,
|
2900 |
+
"step": 482
|
2901 |
+
},
|
2902 |
+
{
|
2903 |
+
"epoch": 8.36,
|
2904 |
+
"learning_rate": 2.8888034189529524e-06,
|
2905 |
+
"loss": 0.0037,
|
2906 |
+
"step": 483
|
2907 |
+
},
|
2908 |
+
{
|
2909 |
+
"epoch": 8.38,
|
2910 |
+
"learning_rate": 2.8489049864510053e-06,
|
2911 |
+
"loss": 0.004,
|
2912 |
+
"step": 484
|
2913 |
+
},
|
2914 |
+
{
|
2915 |
+
"epoch": 8.4,
|
2916 |
+
"learning_rate": 2.809238182967092e-06,
|
2917 |
+
"loss": 0.0042,
|
2918 |
+
"step": 485
|
2919 |
+
},
|
2920 |
+
{
|
2921 |
+
"epoch": 8.42,
|
2922 |
+
"learning_rate": 2.769804293336994e-06,
|
2923 |
+
"loss": 0.0039,
|
2924 |
+
"step": 486
|
2925 |
+
},
|
2926 |
+
{
|
2927 |
+
"epoch": 8.43,
|
2928 |
+
"learning_rate": 2.730604594852243e-06,
|
2929 |
+
"loss": 0.004,
|
2930 |
+
"step": 487
|
2931 |
+
},
|
2932 |
+
{
|
2933 |
+
"epoch": 8.45,
|
2934 |
+
"learning_rate": 2.691640357218759e-06,
|
2935 |
+
"loss": 0.0037,
|
2936 |
+
"step": 488
|
2937 |
+
},
|
2938 |
+
{
|
2939 |
+
"epoch": 8.47,
|
2940 |
+
"learning_rate": 2.6529128425157226e-06,
|
2941 |
+
"loss": 0.0043,
|
2942 |
+
"step": 489
|
2943 |
+
},
|
2944 |
+
{
|
2945 |
+
"epoch": 8.48,
|
2946 |
+
"learning_rate": 2.6144233051546797e-06,
|
2947 |
+
"loss": 0.0041,
|
2948 |
+
"step": 490
|
2949 |
+
},
|
2950 |
+
{
|
2951 |
+
"epoch": 8.5,
|
2952 |
+
"learning_rate": 2.576172991838933e-06,
|
2953 |
+
"loss": 0.0036,
|
2954 |
+
"step": 491
|
2955 |
+
},
|
2956 |
+
{
|
2957 |
+
"epoch": 8.52,
|
2958 |
+
"learning_rate": 2.5381631415231455e-06,
|
2959 |
+
"loss": 0.0036,
|
2960 |
+
"step": 492
|
2961 |
+
},
|
2962 |
+
{
|
2963 |
+
"epoch": 8.54,
|
2964 |
+
"learning_rate": 2.5003949853732135e-06,
|
2965 |
+
"loss": 0.0036,
|
2966 |
+
"step": 493
|
2967 |
+
},
|
2968 |
+
{
|
2969 |
+
"epoch": 8.55,
|
2970 |
+
"learning_rate": 2.4628697467263916e-06,
|
2971 |
+
"loss": 0.0042,
|
2972 |
+
"step": 494
|
2973 |
+
},
|
2974 |
+
{
|
2975 |
+
"epoch": 8.57,
|
2976 |
+
"learning_rate": 2.425588641051656e-06,
|
2977 |
+
"loss": 0.0038,
|
2978 |
+
"step": 495
|
2979 |
+
},
|
2980 |
+
{
|
2981 |
+
"epoch": 8.59,
|
2982 |
+
"learning_rate": 2.388552875910354e-06,
|
2983 |
+
"loss": 0.004,
|
2984 |
+
"step": 496
|
2985 |
+
},
|
2986 |
+
{
|
2987 |
+
"epoch": 8.61,
|
2988 |
+
"learning_rate": 2.351763650917074e-06,
|
2989 |
+
"loss": 0.0038,
|
2990 |
+
"step": 497
|
2991 |
+
},
|
2992 |
+
{
|
2993 |
+
"epoch": 8.62,
|
2994 |
+
"learning_rate": 2.315222157700797e-06,
|
2995 |
+
"loss": 0.0037,
|
2996 |
+
"step": 498
|
2997 |
+
},
|
2998 |
+
{
|
2999 |
+
"epoch": 8.64,
|
3000 |
+
"learning_rate": 2.2789295798662967e-06,
|
3001 |
+
"loss": 0.004,
|
3002 |
+
"step": 499
|
3003 |
+
},
|
3004 |
+
{
|
3005 |
+
"epoch": 8.66,
|
3006 |
+
"learning_rate": 2.2428870929558012e-06,
|
3007 |
+
"loss": 0.0039,
|
3008 |
+
"step": 500
|
3009 |
+
},
|
3010 |
+
{
|
3011 |
+
"epoch": 8.68,
|
3012 |
+
"learning_rate": 2.207095864410919e-06,
|
3013 |
+
"loss": 0.004,
|
3014 |
+
"step": 501
|
3015 |
+
},
|
3016 |
+
{
|
3017 |
+
"epoch": 8.69,
|
3018 |
+
"learning_rate": 2.171557053534814e-06,
|
3019 |
+
"loss": 0.0043,
|
3020 |
+
"step": 502
|
3021 |
+
},
|
3022 |
+
{
|
3023 |
+
"epoch": 8.71,
|
3024 |
+
"learning_rate": 2.1362718114546777e-06,
|
3025 |
+
"loss": 0.0038,
|
3026 |
+
"step": 503
|
3027 |
+
},
|
3028 |
+
{
|
3029 |
+
"epoch": 8.73,
|
3030 |
+
"learning_rate": 2.101241281084416e-06,
|
3031 |
+
"loss": 0.0033,
|
3032 |
+
"step": 504
|
3033 |
+
},
|
3034 |
+
{
|
3035 |
+
"epoch": 8.74,
|
3036 |
+
"learning_rate": 2.0664665970876496e-06,
|
3037 |
+
"loss": 0.004,
|
3038 |
+
"step": 505
|
3039 |
+
},
|
3040 |
+
{
|
3041 |
+
"epoch": 8.76,
|
3042 |
+
"learning_rate": 2.0319488858409552e-06,
|
3043 |
+
"loss": 0.0037,
|
3044 |
+
"step": 506
|
3045 |
+
},
|
3046 |
+
{
|
3047 |
+
"epoch": 8.78,
|
3048 |
+
"learning_rate": 1.997689265397377e-06,
|
3049 |
+
"loss": 0.0038,
|
3050 |
+
"step": 507
|
3051 |
+
},
|
3052 |
+
{
|
3053 |
+
"epoch": 8.8,
|
3054 |
+
"learning_rate": 1.963688845450218e-06,
|
3055 |
+
"loss": 0.0041,
|
3056 |
+
"step": 508
|
3057 |
+
},
|
3058 |
+
{
|
3059 |
+
"epoch": 8.81,
|
3060 |
+
"learning_rate": 1.929948727297096e-06,
|
3061 |
+
"loss": 0.0042,
|
3062 |
+
"step": 509
|
3063 |
+
},
|
3064 |
+
{
|
3065 |
+
"epoch": 8.83,
|
3066 |
+
"learning_rate": 1.8964700038042628e-06,
|
3067 |
+
"loss": 0.0032,
|
3068 |
+
"step": 510
|
3069 |
+
},
|
3070 |
+
{
|
3071 |
+
"epoch": 8.85,
|
3072 |
+
"learning_rate": 1.8632537593712186e-06,
|
3073 |
+
"loss": 0.0038,
|
3074 |
+
"step": 511
|
3075 |
+
},
|
3076 |
+
{
|
3077 |
+
"epoch": 8.87,
|
3078 |
+
"learning_rate": 1.8303010698955803e-06,
|
3079 |
+
"loss": 0.003,
|
3080 |
+
"step": 512
|
3081 |
+
},
|
3082 |
+
{
|
3083 |
+
"epoch": 8.88,
|
3084 |
+
"learning_rate": 1.7976130027382332e-06,
|
3085 |
+
"loss": 0.0035,
|
3086 |
+
"step": 513
|
3087 |
+
},
|
3088 |
+
{
|
3089 |
+
"epoch": 8.9,
|
3090 |
+
"learning_rate": 1.76519061668876e-06,
|
3091 |
+
"loss": 0.0037,
|
3092 |
+
"step": 514
|
3093 |
+
},
|
3094 |
+
{
|
3095 |
+
"epoch": 8.92,
|
3096 |
+
"learning_rate": 1.7330349619311415e-06,
|
3097 |
+
"loss": 0.0038,
|
3098 |
+
"step": 515
|
3099 |
+
},
|
3100 |
+
{
|
3101 |
+
"epoch": 8.94,
|
3102 |
+
"learning_rate": 1.7011470800097496e-06,
|
3103 |
+
"loss": 0.0042,
|
3104 |
+
"step": 516
|
3105 |
+
},
|
3106 |
+
{
|
3107 |
+
"epoch": 8.95,
|
3108 |
+
"learning_rate": 1.6695280037955953e-06,
|
3109 |
+
"loss": 0.0031,
|
3110 |
+
"step": 517
|
3111 |
+
},
|
3112 |
+
{
|
3113 |
+
"epoch": 8.97,
|
3114 |
+
"learning_rate": 1.638178757452894e-06,
|
3115 |
+
"loss": 0.0035,
|
3116 |
+
"step": 518
|
3117 |
+
},
|
3118 |
+
{
|
3119 |
+
"epoch": 8.99,
|
3120 |
+
"learning_rate": 1.6071003564058697e-06,
|
3121 |
+
"loss": 0.0041,
|
3122 |
+
"step": 519
|
3123 |
+
},
|
3124 |
+
{
|
3125 |
+
"epoch": 9.0,
|
3126 |
+
"learning_rate": 1.5762938073058853e-06,
|
3127 |
+
"loss": 0.003,
|
3128 |
+
"step": 520
|
3129 |
+
},
|
3130 |
+
{
|
3131 |
+
"epoch": 9.02,
|
3132 |
+
"learning_rate": 1.5457601079988226e-06,
|
3133 |
+
"loss": 0.0025,
|
3134 |
+
"step": 521
|
3135 |
+
},
|
3136 |
+
{
|
3137 |
+
"epoch": 9.04,
|
3138 |
+
"learning_rate": 1.5155002474927683e-06,
|
3139 |
+
"loss": 0.0025,
|
3140 |
+
"step": 522
|
3141 |
+
},
|
3142 |
+
{
|
3143 |
+
"epoch": 9.06,
|
3144 |
+
"learning_rate": 1.4855152059259737e-06,
|
3145 |
+
"loss": 0.0026,
|
3146 |
+
"step": 523
|
3147 |
+
},
|
3148 |
+
{
|
3149 |
+
"epoch": 9.07,
|
3150 |
+
"learning_rate": 1.4558059545351144e-06,
|
3151 |
+
"loss": 0.0033,
|
3152 |
+
"step": 524
|
3153 |
+
},
|
3154 |
+
{
|
3155 |
+
"epoch": 9.09,
|
3156 |
+
"learning_rate": 1.4263734556238262e-06,
|
3157 |
+
"loss": 0.0027,
|
3158 |
+
"step": 525
|
3159 |
+
},
|
3160 |
+
{
|
3161 |
+
"epoch": 9.11,
|
3162 |
+
"learning_rate": 1.397218662531532e-06,
|
3163 |
+
"loss": 0.0028,
|
3164 |
+
"step": 526
|
3165 |
+
},
|
3166 |
+
{
|
3167 |
+
"epoch": 9.13,
|
3168 |
+
"learning_rate": 1.3683425196025734e-06,
|
3169 |
+
"loss": 0.0029,
|
3170 |
+
"step": 527
|
3171 |
+
},
|
3172 |
+
{
|
3173 |
+
"epoch": 9.14,
|
3174 |
+
"learning_rate": 1.339745962155613e-06,
|
3175 |
+
"loss": 0.0025,
|
3176 |
+
"step": 528
|
3177 |
+
},
|
3178 |
+
{
|
3179 |
+
"epoch": 9.16,
|
3180 |
+
"learning_rate": 1.3114299164533451e-06,
|
3181 |
+
"loss": 0.0023,
|
3182 |
+
"step": 529
|
3183 |
+
},
|
3184 |
+
{
|
3185 |
+
"epoch": 9.18,
|
3186 |
+
"learning_rate": 1.2833952996724864e-06,
|
3187 |
+
"loss": 0.0034,
|
3188 |
+
"step": 530
|
3189 |
+
},
|
3190 |
+
{
|
3191 |
+
"epoch": 9.19,
|
3192 |
+
"learning_rate": 1.2556430198740776e-06,
|
3193 |
+
"loss": 0.003,
|
3194 |
+
"step": 531
|
3195 |
+
},
|
3196 |
+
{
|
3197 |
+
"epoch": 9.21,
|
3198 |
+
"learning_rate": 1.2281739759740575e-06,
|
3199 |
+
"loss": 0.0024,
|
3200 |
+
"step": 532
|
3201 |
+
},
|
3202 |
+
{
|
3203 |
+
"epoch": 9.23,
|
3204 |
+
"learning_rate": 1.2009890577141625e-06,
|
3205 |
+
"loss": 0.0022,
|
3206 |
+
"step": 533
|
3207 |
+
},
|
3208 |
+
{
|
3209 |
+
"epoch": 9.25,
|
3210 |
+
"learning_rate": 1.1740891456330894e-06,
|
3211 |
+
"loss": 0.0026,
|
3212 |
+
"step": 534
|
3213 |
+
},
|
3214 |
+
{
|
3215 |
+
"epoch": 9.26,
|
3216 |
+
"learning_rate": 1.1474751110379933e-06,
|
3217 |
+
"loss": 0.0025,
|
3218 |
+
"step": 535
|
3219 |
+
},
|
3220 |
+
{
|
3221 |
+
"epoch": 9.28,
|
3222 |
+
"learning_rate": 1.121147815976248e-06,
|
3223 |
+
"loss": 0.0028,
|
3224 |
+
"step": 536
|
3225 |
+
},
|
3226 |
+
{
|
3227 |
+
"epoch": 9.3,
|
3228 |
+
"learning_rate": 1.095108113207537e-06,
|
3229 |
+
"loss": 0.0028,
|
3230 |
+
"step": 537
|
3231 |
+
},
|
3232 |
+
{
|
3233 |
+
"epoch": 9.32,
|
3234 |
+
"learning_rate": 1.0693568461762238e-06,
|
3235 |
+
"loss": 0.003,
|
3236 |
+
"step": 538
|
3237 |
+
},
|
3238 |
+
{
|
3239 |
+
"epoch": 9.33,
|
3240 |
+
"learning_rate": 1.0438948489840327e-06,
|
3241 |
+
"loss": 0.003,
|
3242 |
+
"step": 539
|
3243 |
+
},
|
3244 |
+
{
|
3245 |
+
"epoch": 9.35,
|
3246 |
+
"learning_rate": 1.01872294636304e-06,
|
3247 |
+
"loss": 0.0029,
|
3248 |
+
"step": 540
|
3249 |
+
},
|
3250 |
+
{
|
3251 |
+
"epoch": 9.37,
|
3252 |
+
"learning_rate": 9.93841953648944e-07,
|
3253 |
+
"loss": 0.0025,
|
3254 |
+
"step": 541
|
3255 |
+
},
|
3256 |
+
{
|
3257 |
+
"epoch": 9.39,
|
3258 |
+
"learning_rate": 9.692526767546727e-07,
|
3259 |
+
"loss": 0.0028,
|
3260 |
+
"step": 542
|
3261 |
+
},
|
3262 |
+
{
|
3263 |
+
"epoch": 9.4,
|
3264 |
+
"learning_rate": 9.449559121442731e-07,
|
3265 |
+
"loss": 0.0028,
|
3266 |
+
"step": 543
|
3267 |
+
},
|
3268 |
+
{
|
3269 |
+
"epoch": 9.42,
|
3270 |
+
"learning_rate": 9.209524468071096e-07,
|
3271 |
+
"loss": 0.0029,
|
3272 |
+
"step": 544
|
3273 |
+
},
|
3274 |
+
{
|
3275 |
+
"epoch": 9.44,
|
3276 |
+
"learning_rate": 8.972430582323788e-07,
|
3277 |
+
"loss": 0.0025,
|
3278 |
+
"step": 545
|
3279 |
+
},
|
3280 |
+
{
|
3281 |
+
"epoch": 9.45,
|
3282 |
+
"learning_rate": 8.738285143839198e-07,
|
3283 |
+
"loss": 0.0023,
|
3284 |
+
"step": 546
|
3285 |
+
},
|
3286 |
+
{
|
3287 |
+
"epoch": 9.47,
|
3288 |
+
"learning_rate": 8.507095736753435e-07,
|
3289 |
+
"loss": 0.0031,
|
3290 |
+
"step": 547
|
3291 |
+
},
|
3292 |
+
{
|
3293 |
+
"epoch": 9.49,
|
3294 |
+
"learning_rate": 8.278869849454718e-07,
|
3295 |
+
"loss": 0.0025,
|
3296 |
+
"step": 548
|
3297 |
+
},
|
3298 |
+
{
|
3299 |
+
"epoch": 9.51,
|
3300 |
+
"learning_rate": 8.053614874340665e-07,
|
3301 |
+
"loss": 0.0029,
|
3302 |
+
"step": 549
|
3303 |
+
},
|
3304 |
+
{
|
3305 |
+
"epoch": 9.52,
|
3306 |
+
"learning_rate": 7.831338107579056e-07,
|
3307 |
+
"loss": 0.0025,
|
3308 |
+
"step": 550
|
3309 |
+
}
|
3310 |
+
],
|
3311 |
+
"max_steps": 570,
|
3312 |
+
"num_train_epochs": 10,
|
3313 |
+
"total_flos": 4.2387842097888625e+18,
|
3314 |
+
"trial_name": null,
|
3315 |
+
"trial_params": null
|
3316 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0da89e30e3909c1102a0ac1bed23fb4da68f88e1d82ed81b225d0831775f5048
|
3 |
+
size 5435
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,578 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage == 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dicts.append(torch.load(f, map_location=device))
|
147 |
+
|
148 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
149 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
150 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
151 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
152 |
+
|
153 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
154 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
155 |
+
# use the max of the partition_count to get the dp world_size.
|
156 |
+
|
157 |
+
if type(world_size) is list:
|
158 |
+
world_size = max(world_size)
|
159 |
+
|
160 |
+
if world_size != total_files:
|
161 |
+
raise ValueError(
|
162 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
163 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
164 |
+
)
|
165 |
+
|
166 |
+
# the groups are named differently in each stage
|
167 |
+
if zero_stage == 2:
|
168 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
169 |
+
elif zero_stage == 3:
|
170 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
171 |
+
else:
|
172 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
173 |
+
|
174 |
+
if zero_stage == 2:
|
175 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
176 |
+
elif zero_stage == 3:
|
177 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
178 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
179 |
+
#
|
180 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
181 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
182 |
+
|
183 |
+
fp32_flat_groups = [
|
184 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
185 |
+
]
|
186 |
+
|
187 |
+
return zero_stage, world_size, fp32_flat_groups
|
188 |
+
|
189 |
+
|
190 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
191 |
+
"""
|
192 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
193 |
+
|
194 |
+
Args:
|
195 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
196 |
+
|
197 |
+
"""
|
198 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
199 |
+
|
200 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
201 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
202 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
203 |
+
|
204 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
205 |
+
|
206 |
+
zero_model_states = parse_model_states(model_files)
|
207 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
208 |
+
|
209 |
+
if zero_stage == 2:
|
210 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
211 |
+
elif zero_stage == 3:
|
212 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
248 |
+
param_shapes = zero_model_states[0].param_shapes
|
249 |
+
|
250 |
+
# Reconstruction protocol:
|
251 |
+
#
|
252 |
+
# XXX: document this
|
253 |
+
|
254 |
+
if debug:
|
255 |
+
for i in range(world_size):
|
256 |
+
for j in range(len(fp32_flat_groups[0])):
|
257 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
258 |
+
|
259 |
+
# XXX: memory usage doubles here (zero2)
|
260 |
+
num_param_groups = len(fp32_flat_groups[0])
|
261 |
+
merged_single_partition_of_fp32_groups = []
|
262 |
+
for i in range(num_param_groups):
|
263 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
264 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
265 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
266 |
+
avail_numel = sum(
|
267 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
268 |
+
|
269 |
+
if debug:
|
270 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
271 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
272 |
+
# not asserting if there is a mismatch due to possible padding
|
273 |
+
print(f"Have {avail_numel} numels to process.")
|
274 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
275 |
+
|
276 |
+
# params
|
277 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
278 |
+
# out-of-core computing solution
|
279 |
+
total_numel = 0
|
280 |
+
total_params = 0
|
281 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
282 |
+
offset = 0
|
283 |
+
avail_numel = full_single_fp32_vector.numel()
|
284 |
+
for name, shape in shapes.items():
|
285 |
+
|
286 |
+
unpartitioned_numel = shape.numel()
|
287 |
+
total_numel += unpartitioned_numel
|
288 |
+
total_params += 1
|
289 |
+
|
290 |
+
if debug:
|
291 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
292 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
293 |
+
offset += unpartitioned_numel
|
294 |
+
|
295 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
296 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
297 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
298 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
299 |
+
align_to = 2 * world_size
|
300 |
+
|
301 |
+
def zero2_align(x):
|
302 |
+
return align_to * math.ceil(x / align_to)
|
303 |
+
|
304 |
+
if debug:
|
305 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
306 |
+
|
307 |
+
offset = zero2_align(offset)
|
308 |
+
avail_numel = zero2_align(avail_numel)
|
309 |
+
|
310 |
+
if debug:
|
311 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
312 |
+
|
313 |
+
# Sanity check
|
314 |
+
if offset != avail_numel:
|
315 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
316 |
+
|
317 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
318 |
+
|
319 |
+
|
320 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
321 |
+
state_dict = OrderedDict()
|
322 |
+
|
323 |
+
# buffers
|
324 |
+
buffers = zero_model_states[0].buffers
|
325 |
+
state_dict.update(buffers)
|
326 |
+
if debug:
|
327 |
+
print(f"added {len(buffers)} buffers")
|
328 |
+
|
329 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
330 |
+
|
331 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
332 |
+
|
333 |
+
# recover shared parameters
|
334 |
+
for pair in zero_model_states[0].shared_params:
|
335 |
+
if pair[1] in state_dict:
|
336 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
337 |
+
|
338 |
+
return state_dict
|
339 |
+
|
340 |
+
|
341 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
342 |
+
remainder = unpartitioned_numel % world_size
|
343 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
344 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
345 |
+
return partitioned_numel, padding_numel
|
346 |
+
|
347 |
+
|
348 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
349 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
350 |
+
return
|
351 |
+
|
352 |
+
if debug:
|
353 |
+
for i in range(world_size):
|
354 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
355 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
356 |
+
|
357 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
358 |
+
wanted_params = len(frozen_param_shapes)
|
359 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
360 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
361 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
362 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
363 |
+
|
364 |
+
total_params = 0
|
365 |
+
total_numel = 0
|
366 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
367 |
+
total_params += 1
|
368 |
+
unpartitioned_numel = shape.numel()
|
369 |
+
total_numel += unpartitioned_numel
|
370 |
+
|
371 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
372 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
373 |
+
|
374 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
375 |
+
|
376 |
+
if debug:
|
377 |
+
print(
|
378 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
379 |
+
)
|
380 |
+
|
381 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
382 |
+
|
383 |
+
|
384 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
385 |
+
param_shapes = zero_model_states[0].param_shapes
|
386 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
387 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
388 |
+
# param, re-consolidating each param, while dealing with padding if any
|
389 |
+
|
390 |
+
# merge list of dicts, preserving order
|
391 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
392 |
+
|
393 |
+
if debug:
|
394 |
+
for i in range(world_size):
|
395 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
396 |
+
|
397 |
+
wanted_params = len(param_shapes)
|
398 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
399 |
+
# not asserting if there is a mismatch due to possible padding
|
400 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
401 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
402 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
403 |
+
|
404 |
+
# params
|
405 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
406 |
+
# out-of-core computing solution
|
407 |
+
offset = 0
|
408 |
+
total_numel = 0
|
409 |
+
total_params = 0
|
410 |
+
for name, shape in param_shapes.items():
|
411 |
+
|
412 |
+
unpartitioned_numel = shape.numel()
|
413 |
+
total_numel += unpartitioned_numel
|
414 |
+
total_params += 1
|
415 |
+
|
416 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
417 |
+
|
418 |
+
if debug:
|
419 |
+
print(
|
420 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
421 |
+
)
|
422 |
+
|
423 |
+
# XXX: memory usage doubles here
|
424 |
+
state_dict[name] = torch.cat(
|
425 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
426 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
427 |
+
offset += partitioned_numel
|
428 |
+
|
429 |
+
offset *= world_size
|
430 |
+
|
431 |
+
# Sanity check
|
432 |
+
if offset != avail_numel:
|
433 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
434 |
+
|
435 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
436 |
+
|
437 |
+
|
438 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
439 |
+
state_dict = OrderedDict()
|
440 |
+
|
441 |
+
# buffers
|
442 |
+
buffers = zero_model_states[0].buffers
|
443 |
+
state_dict.update(buffers)
|
444 |
+
if debug:
|
445 |
+
print(f"added {len(buffers)} buffers")
|
446 |
+
|
447 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
448 |
+
|
449 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
450 |
+
|
451 |
+
# recover shared parameters
|
452 |
+
for pair in zero_model_states[0].shared_params:
|
453 |
+
if pair[1] in state_dict:
|
454 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
455 |
+
|
456 |
+
return state_dict
|
457 |
+
|
458 |
+
|
459 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
460 |
+
"""
|
461 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
462 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
463 |
+
via a model hub.
|
464 |
+
|
465 |
+
Args:
|
466 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
467 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
468 |
+
|
469 |
+
Returns:
|
470 |
+
- pytorch ``state_dict``
|
471 |
+
|
472 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
473 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
474 |
+
the checkpoint.
|
475 |
+
|
476 |
+
A typical usage might be ::
|
477 |
+
|
478 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
479 |
+
# do the training and checkpoint saving
|
480 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
481 |
+
model = model.cpu() # move to cpu
|
482 |
+
model.load_state_dict(state_dict)
|
483 |
+
# submit to model hub or save the model to share with others
|
484 |
+
|
485 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
486 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
487 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
488 |
+
|
489 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
490 |
+
|
491 |
+
"""
|
492 |
+
if tag is None:
|
493 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
494 |
+
if os.path.isfile(latest_path):
|
495 |
+
with open(latest_path, 'r') as fd:
|
496 |
+
tag = fd.read().strip()
|
497 |
+
else:
|
498 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
499 |
+
|
500 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
501 |
+
|
502 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
503 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
504 |
+
|
505 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
506 |
+
|
507 |
+
|
508 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
509 |
+
"""
|
510 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
511 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
512 |
+
|
513 |
+
Args:
|
514 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
515 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
516 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
517 |
+
"""
|
518 |
+
|
519 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
520 |
+
print(f"Saving fp32 state dict to {output_file}")
|
521 |
+
torch.save(state_dict, output_file)
|
522 |
+
|
523 |
+
|
524 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
525 |
+
"""
|
526 |
+
1. Put the provided model to cpu
|
527 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
528 |
+
3. Load it into the provided model
|
529 |
+
|
530 |
+
Args:
|
531 |
+
- ``model``: the model object to update
|
532 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
533 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
534 |
+
|
535 |
+
Returns:
|
536 |
+
- ``model`: modified model
|
537 |
+
|
538 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
539 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
540 |
+
conveniently placed for you in the checkpoint folder.
|
541 |
+
|
542 |
+
A typical usage might be ::
|
543 |
+
|
544 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
545 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
546 |
+
# submit to model hub or save the model to share with others
|
547 |
+
|
548 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
549 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
550 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
551 |
+
|
552 |
+
"""
|
553 |
+
logger.info(f"Extracting fp32 weights")
|
554 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
555 |
+
|
556 |
+
logger.info(f"Overwriting model with fp32 weights")
|
557 |
+
model = model.cpu()
|
558 |
+
model.load_state_dict(state_dict, strict=False)
|
559 |
+
|
560 |
+
return model
|
561 |
+
|
562 |
+
|
563 |
+
if __name__ == "__main__":
|
564 |
+
|
565 |
+
parser = argparse.ArgumentParser()
|
566 |
+
parser.add_argument("checkpoint_dir",
|
567 |
+
type=str,
|
568 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
569 |
+
parser.add_argument(
|
570 |
+
"output_file",
|
571 |
+
type=str,
|
572 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
573 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
574 |
+
args = parser.parse_args()
|
575 |
+
|
576 |
+
debug = args.debug
|
577 |
+
|
578 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
|