wilson-wei
commited on
Commit
•
82fd35e
1
Parent(s):
58c273e
update model card README.md
Browse files
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss:
|
36 |
-
- Accuracy: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -59,13 +59,32 @@ The following hyperparameters were used during training:
|
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
- lr_scheduler_warmup_ratio: 0.1
|
62 |
-
- num_epochs:
|
63 |
|
64 |
### Training results
|
65 |
|
66 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
67 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
|
71 |
### Framework versions
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.84
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.8605
|
36 |
+
- Accuracy: 0.84
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
- lr_scheduler_warmup_ratio: 0.1
|
62 |
+
- num_epochs: 20
|
63 |
|
64 |
### Training results
|
65 |
|
66 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
67 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
68 |
+
| 2.1622 | 1.0 | 113 | 2.0289 | 0.36 |
|
69 |
+
| 1.6015 | 2.0 | 226 | 1.4290 | 0.59 |
|
70 |
+
| 1.1929 | 3.0 | 339 | 1.1003 | 0.7 |
|
71 |
+
| 0.9015 | 4.0 | 452 | 0.8761 | 0.76 |
|
72 |
+
| 0.7038 | 5.0 | 565 | 0.7516 | 0.76 |
|
73 |
+
| 0.3261 | 6.0 | 678 | 0.7753 | 0.77 |
|
74 |
+
| 0.5327 | 7.0 | 791 | 0.6131 | 0.79 |
|
75 |
+
| 0.1239 | 8.0 | 904 | 0.6283 | 0.8 |
|
76 |
+
| 0.1193 | 9.0 | 1017 | 0.5770 | 0.85 |
|
77 |
+
| 0.1405 | 10.0 | 1130 | 0.7979 | 0.8 |
|
78 |
+
| 0.0113 | 11.0 | 1243 | 0.7830 | 0.81 |
|
79 |
+
| 0.1392 | 12.0 | 1356 | 0.7350 | 0.85 |
|
80 |
+
| 0.0065 | 13.0 | 1469 | 0.7935 | 0.82 |
|
81 |
+
| 0.0049 | 14.0 | 1582 | 0.8323 | 0.84 |
|
82 |
+
| 0.0041 | 15.0 | 1695 | 0.7644 | 0.86 |
|
83 |
+
| 0.0034 | 16.0 | 1808 | 0.8438 | 0.85 |
|
84 |
+
| 0.0247 | 17.0 | 1921 | 0.7781 | 0.86 |
|
85 |
+
| 0.003 | 18.0 | 2034 | 0.8368 | 0.84 |
|
86 |
+
| 0.0028 | 19.0 | 2147 | 0.8477 | 0.84 |
|
87 |
+
| 0.0031 | 20.0 | 2260 | 0.8605 | 0.84 |
|
88 |
|
89 |
|
90 |
### Framework versions
|