--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: train split: train args: train metrics: - name: Accuracy type: accuracy value: 0.87 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Accuracy: 0.87 - Loss: 0.9175 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 17 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:---------------:| | 2.2295 | 1.0 | 113 | 0.4 | 2.1501 | | 1.7373 | 2.0 | 226 | 0.6 | 1.6194 | | 1.3497 | 3.0 | 339 | 0.72 | 1.1717 | | 1.0135 | 4.0 | 452 | 0.71 | 1.0361 | | 0.6951 | 5.0 | 565 | 0.77 | 0.7724 | | 0.4279 | 6.0 | 678 | 0.76 | 0.7731 | | 0.5178 | 7.0 | 791 | 0.82 | 0.6048 | | 0.141 | 8.0 | 904 | 0.79 | 0.7486 | | 0.2459 | 9.0 | 1017 | 0.85 | 0.6326 | | 0.0331 | 10.0 | 1130 | 0.82 | 0.8706 | | 0.0214 | 11.0 | 1243 | 0.81 | 1.0099 | | 0.0744 | 12.0 | 1356 | 0.8 | 1.0210 | | 0.0043 | 13.0 | 1469 | 0.82 | 0.9894 | | 0.0032 | 14.0 | 1582 | 0.82 | 0.9803 | | 0.0025 | 15.0 | 1695 | 0.83 | 1.0476 | | 0.0021 | 16.0 | 1808 | 0.82 | 1.0483 | | 0.0183 | 17.0 | 1921 | 0.87 | 0.9175 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1 - Datasets 2.14.0 - Tokenizers 0.13.3