---
library_name: peft
license: llama3.1
base_model: meta-llama/Llama-3.1-8B
tags:
- generated_from_trainer
datasets:
- open-r1/OpenR1-Math-220k
model-index:
- name: outputs/lora-out
results: []
---
[
](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.6.0`
```yaml
base_model: meta-llama/Llama-3.1-8B
# optionally might have model_type or tokenizer_type
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
load_in_8bit: false
load_in_4bit: false
strict: false
# torch_compile: true
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_fused_linear_cross_entropy: true
lora_qkv_kernel: true
lora_o_kernel: true
chat_template: llama3
datasets:
- field_messages: messages
message_field_content: content
message_field_role: role
path: open-r1/OpenR1-Math-220k
name: default
split: train
type: chat_template
dataset_prepared_path: last_run_prepared
val_set_size: 0.0
output_dir: ./outputs/lora-out
sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 64
lora_alpha: 128
lora_dropout: 0.05
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lora_modules_to_save:
- embed_tokens
- lm_head
peft_init_lora_weights: orthogonal
# peft_use_dora: true
wandb_project: init-lora-weights-tests-202502
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 4
num_epochs: 3
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 0.0002
max_grad_norm: 1.0
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
eos_token: <|eot_id|>
```
# outputs/lora-out
This model is a fine-tuned version of [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) on the open-r1/OpenR1-Math-220k dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3.0
### Training results
### Framework versions
- PEFT 0.14.1.dev0
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0