--- library_name: peft license: llama3.1 base_model: meta-llama/Llama-3.1-8B tags: - generated_from_trainer datasets: - open-r1/OpenR1-Math-220k model-index: - name: outputs/lora-out results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: meta-llama/Llama-3.1-8B # optionally might have model_type or tokenizer_type # Automatically upload checkpoint and final model to HF # hub_model_id: username/custom_model_name load_in_8bit: false load_in_4bit: false strict: false # torch_compile: true plugins: - axolotl.integrations.liger.LigerPlugin liger_fused_linear_cross_entropy: true lora_qkv_kernel: true lora_o_kernel: true chat_template: llama3 datasets: - field_messages: messages message_field_content: content message_field_role: role path: open-r1/OpenR1-Math-220k name: default split: train type: chat_template dataset_prepared_path: last_run_prepared val_set_size: 0.0 output_dir: ./outputs/lora-out sequence_len: 8192 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 64 lora_alpha: 128 lora_dropout: 0.05 lora_target_modules: - q_proj - k_proj - v_proj - o_proj lora_modules_to_save: - embed_tokens - lm_head peft_init_lora_weights: orthogonal # peft_use_dora: true wandb_project: init-lora-weights-tests-202502 wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 4 num_epochs: 3 optimizer: adamw_torch_fused lr_scheduler: cosine learning_rate: 0.0002 max_grad_norm: 1.0 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true s2_attention: warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: <|end_of_text|> eos_token: <|eot_id|> ```

# outputs/lora-out This model is a fine-tuned version of [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) on the open-r1/OpenR1-Math-220k dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3.0 ### Training results ### Framework versions - PEFT 0.14.1.dev0 - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0