Update myr1/modeling_deepseek.py
Browse files- myr1/modeling_deepseek.py +536 -195
myr1/modeling_deepseek.py
CHANGED
@@ -54,17 +54,19 @@ logger = logging.get_logger(__name__)
|
|
54 |
|
55 |
# If flash-attn is available
|
56 |
if is_flash_attn_2_available():
|
57 |
-
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
58 |
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
59 |
|
60 |
# This helps make `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
|
61 |
if is_torch_fx_available():
|
62 |
if not is_torch_greater_or_equal_than_1_13:
|
63 |
import torch.fx
|
|
|
64 |
_prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
|
65 |
|
66 |
_CONFIG_FOR_DOC = "DeepseekV3Config"
|
67 |
|
|
|
68 |
# ==============================================================================
|
69 |
# Rotary Embedding Helpers
|
70 |
# ==============================================================================
|
@@ -80,9 +82,11 @@ def _get_unpad_data(attention_mask: torch.Tensor) -> Tuple[torch.Tensor, torch.T
|
|
80 |
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
81 |
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
82 |
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
|
|
83 |
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
84 |
return indices, cu_seqlens, max_seqlen_in_batch
|
85 |
|
|
|
86 |
# ==============================================================================
|
87 |
# Normalization Layers
|
88 |
# ==============================================================================
|
@@ -98,13 +102,16 @@ class DeepseekV3RMSNorm(nn.Module):
|
|
98 |
self.variance_epsilon = eps
|
99 |
|
100 |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
|
101 |
input_dtype = hidden_states.dtype
|
102 |
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
103 |
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
104 |
return (self.weight * hidden_states).to(input_dtype)
|
105 |
|
|
|
106 |
ALL_LAYERNORM_LAYERS.append(DeepseekV3RMSNorm)
|
107 |
|
|
|
108 |
# ==============================================================================
|
109 |
# Rotary Embeddings
|
110 |
# ==============================================================================
|
@@ -125,20 +132,25 @@ class DeepseekV3RotaryEmbedding(nn.Module):
|
|
125 |
self.max_position_embeddings = max_position_embeddings
|
126 |
self.base = base
|
127 |
|
128 |
-
inv_freq = 1.0 / (
|
|
|
|
|
129 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
130 |
-
|
|
|
131 |
self._set_cos_sin_cache(
|
132 |
seq_len=max_position_embeddings,
|
133 |
device=self.inv_freq.device,
|
134 |
dtype=torch.get_default_dtype(),
|
135 |
)
|
136 |
-
self.max_seq_len_cached =
|
137 |
|
138 |
def _set_cos_sin_cache(self, seq_len: int, device: torch.device, dtype: torch.dtype):
|
139 |
self.max_seq_len_cached = seq_len
|
140 |
-
t = torch.arange(
|
141 |
-
|
|
|
|
|
142 |
emb = torch.cat((freqs, freqs), dim=-1)
|
143 |
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
144 |
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
@@ -147,17 +159,16 @@ class DeepseekV3RotaryEmbedding(nn.Module):
|
|
147 |
"""
|
148 |
x: [batch_size, num_heads, seq_len, head_size]
|
149 |
"""
|
150 |
-
if
|
151 |
-
seq_len = x.
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
self.sin_cached[:seq_len].to(x.dtype))
|
156 |
|
157 |
|
158 |
class DeepseekV3LinearScalingRotaryEmbedding(DeepseekV3RotaryEmbedding):
|
159 |
"""
|
160 |
-
RoPE extended with linear scaling. Credits to the Reddit user /u/kaiokendev
|
161 |
"""
|
162 |
def __init__(
|
163 |
self,
|
@@ -172,7 +183,8 @@ class DeepseekV3LinearScalingRotaryEmbedding(DeepseekV3RotaryEmbedding):
|
|
172 |
|
173 |
def _set_cos_sin_cache(self, seq_len: int, device: torch.device, dtype: torch.dtype):
|
174 |
self.max_seq_len_cached = seq_len
|
175 |
-
t = torch.arange(
|
|
|
176 |
freqs = torch.outer(t, self.inv_freq)
|
177 |
emb = torch.cat((freqs, freqs), dim=-1)
|
178 |
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
@@ -182,7 +194,7 @@ class DeepseekV3LinearScalingRotaryEmbedding(DeepseekV3RotaryEmbedding):
|
|
182 |
class DeepseekV3DynamicNTKScalingRotaryEmbedding(DeepseekV3RotaryEmbedding):
|
183 |
"""
|
184 |
RoPE extended with Dynamic NTK scaling.
|
185 |
-
Credits to the Reddit users /u/bloc97 and /u/emozilla
|
186 |
"""
|
187 |
def __init__(
|
188 |
self,
|
@@ -197,28 +209,34 @@ class DeepseekV3DynamicNTKScalingRotaryEmbedding(DeepseekV3RotaryEmbedding):
|
|
197 |
|
198 |
def _set_cos_sin_cache(self, seq_len: int, device: torch.device, dtype: torch.dtype):
|
199 |
self.max_seq_len_cached = seq_len
|
|
|
200 |
if seq_len > self.max_position_embeddings:
|
201 |
base = self.base * (
|
202 |
(self.scaling_factor * seq_len / self.max_position_embeddings)
|
203 |
- (self.scaling_factor - 1)
|
204 |
) ** (self.dim / (self.dim - 2))
|
205 |
-
inv_freq = 1.0 / (
|
|
|
|
|
206 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
207 |
-
|
|
|
208 |
freqs = torch.outer(t, self.inv_freq)
|
209 |
emb = torch.cat((freqs, freqs), dim=-1)
|
210 |
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
211 |
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
212 |
|
213 |
|
214 |
-
# Extra Yarn-based formulas
|
215 |
def yarn_find_correction_dim(
|
216 |
num_rotations: float,
|
217 |
dim: int,
|
218 |
base: int = 10000,
|
219 |
max_position_embeddings: int = 2048
|
220 |
):
|
221 |
-
return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (
|
|
|
|
|
222 |
|
223 |
|
224 |
def yarn_find_correction_range(
|
@@ -228,8 +246,13 @@ def yarn_find_correction_range(
|
|
228 |
base: int = 10000,
|
229 |
max_position_embeddings: int = 2048
|
230 |
):
|
231 |
-
low = math.floor(
|
232 |
-
|
|
|
|
|
|
|
|
|
|
|
233 |
return max(low, 0), min(high, dim - 1)
|
234 |
|
235 |
|
@@ -275,21 +298,39 @@ class DeepseekV3YarnRotaryEmbedding(DeepseekV3RotaryEmbedding):
|
|
275 |
def _set_cos_sin_cache(self, seq_len: int, device: torch.device, dtype: torch.dtype):
|
276 |
self.max_seq_len_cached = seq_len
|
277 |
dim = self.dim
|
278 |
-
|
279 |
-
|
280 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2).to(device=device, dtype=torch.float32)
|
282 |
inv_freq = freq_inter * (1 - inv_freq_mask) + freq_extra * inv_freq_mask
|
283 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
|
284 |
t = torch.arange(seq_len, device=device, dtype=torch.float32)
|
285 |
freqs = torch.outer(t, inv_freq)
|
286 |
-
_mscale = float(
|
|
|
|
|
|
|
|
|
287 |
emb = torch.cat((freqs, freqs), dim=-1)
|
288 |
self.register_buffer("cos_cached", (emb.cos() * _mscale).to(dtype), persistent=False)
|
289 |
self.register_buffer("sin_cached", (emb.sin() * _mscale).to(dtype), persistent=False)
|
290 |
|
291 |
|
292 |
-
# ==============================================================================
|
293 |
# General Rotary helper functions
|
294 |
# ==============================================================================
|
295 |
|
@@ -339,7 +380,9 @@ class DeepseekV3MLP(nn.Module):
|
|
339 |
super().__init__()
|
340 |
self.config = config
|
341 |
self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
|
342 |
-
self.intermediate_size =
|
|
|
|
|
343 |
|
344 |
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
345 |
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
@@ -370,9 +413,14 @@ class MoEGate(nn.Module):
|
|
370 |
self.norm_topk_prob = config.norm_topk_prob
|
371 |
self.gating_dim = config.hidden_size
|
372 |
|
|
|
373 |
self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim)))
|
|
|
374 |
if self.topk_method == "noaux_tc":
|
375 |
-
self.e_score_correction_bias = nn.Parameter(
|
|
|
|
|
|
|
376 |
self.reset_parameters()
|
377 |
|
378 |
def reset_parameters(self):
|
@@ -385,29 +433,46 @@ class MoEGate(nn.Module):
|
|
385 |
Compute gating scores and select top-k experts.
|
386 |
"""
|
387 |
bsz, seq_len, h = hidden_states.shape
|
|
|
|
|
388 |
logits = F.linear(hidden_states.float(), self.weight.float(), None)
|
389 |
if self.scoring_func == "sigmoid":
|
390 |
scores = logits.sigmoid()
|
391 |
else:
|
392 |
-
raise NotImplementedError(
|
|
|
|
|
393 |
|
|
|
394 |
if self.topk_method == "noaux_tc":
|
|
|
|
|
395 |
scores_for_choice = scores.view(bsz * seq_len, -1) + self.e_score_correction_bias.unsqueeze(0)
|
396 |
-
group_scores = (
|
397 |
-
|
|
|
|
|
|
|
|
|
398 |
group_mask = torch.zeros_like(group_scores)
|
399 |
group_mask.scatter_(1, group_idx, 1)
|
400 |
-
score_mask = group_mask.unsqueeze(-1).expand(
|
|
|
|
|
401 |
tmp_scores = scores_for_choice.masked_fill(~score_mask.bool(), 0.0)
|
402 |
_, topk_idx = torch.topk(tmp_scores, k=self.top_k, dim=-1, sorted=False)
|
403 |
topk_weight = scores_for_choice.gather(1, topk_idx)
|
404 |
else:
|
405 |
-
raise NotImplementedError(
|
|
|
|
|
406 |
|
|
|
407 |
if self.top_k > 1 and self.norm_topk_prob:
|
408 |
denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
|
409 |
topk_weight = topk_weight / denominator
|
410 |
|
|
|
411 |
topk_weight = topk_weight * self.routed_scaling_factor
|
412 |
|
413 |
return topk_idx, topk_weight
|
@@ -430,43 +495,62 @@ class DeepseekV3MoE(nn.Module):
|
|
430 |
self.experts_per_rank = config.n_routed_experts // config.ep_size
|
431 |
self.ep_rank = dist.get_rank()
|
432 |
|
|
|
433 |
experts_list = []
|
434 |
for i in range(config.n_routed_experts):
|
|
|
435 |
if self.ep_size > 1:
|
436 |
if i >= self.ep_rank * self.experts_per_rank and i < (self.ep_rank + 1) * self.experts_per_rank:
|
437 |
-
experts_list.append(
|
|
|
|
|
438 |
else:
|
439 |
experts_list.append(None)
|
440 |
else:
|
441 |
-
experts_list.append(
|
|
|
|
|
442 |
self.experts = nn.ModuleList(experts_list)
|
443 |
|
|
|
444 |
self.gate = MoEGate(config)
|
445 |
|
|
|
446 |
if config.n_shared_experts is not None:
|
447 |
intermediate_size = config.moe_intermediate_size * config.n_shared_experts
|
448 |
-
self.shared_experts = DeepseekV3MLP(
|
|
|
|
|
449 |
else:
|
450 |
self.shared_experts = None
|
451 |
|
452 |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
453 |
identity = hidden_states
|
454 |
orig_shape = hidden_states.shape
|
|
|
455 |
topk_idx, topk_weight = self.gate(hidden_states)
|
|
|
456 |
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
|
|
|
|
|
457 |
if not self.training:
|
458 |
y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(*orig_shape)
|
459 |
else:
|
|
|
|
|
|
|
460 |
y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(*orig_shape)
|
|
|
|
|
461 |
if self.shared_experts is not None:
|
462 |
y = y + self.shared_experts(identity)
|
|
|
463 |
return y
|
464 |
|
465 |
@torch.no_grad()
|
466 |
def moe_infer(self, x: torch.Tensor, topk_ids: torch.Tensor, topk_weight: torch.Tensor) -> torch.Tensor:
|
467 |
"""
|
468 |
-
MoE inference path for each token.
|
469 |
-
results via an efficient scatter-add.
|
470 |
"""
|
471 |
cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts)))
|
472 |
cnts.scatter_(1, topk_ids, 1)
|
@@ -475,16 +559,30 @@ class DeepseekV3MoE(nn.Module):
|
|
475 |
sorted_tokens = x[idxs // topk_ids.shape[1]]
|
476 |
sorted_tokens_shape = sorted_tokens.shape
|
477 |
|
|
|
478 |
if self.ep_size > 1:
|
479 |
tokens_per_ep_rank = tokens_per_expert.view(self.ep_size, -1).sum(dim=1)
|
480 |
tokens_per_expert_group = tokens_per_expert.new_empty(tokens_per_expert.shape[0])
|
481 |
dist.all_to_all_single(tokens_per_expert_group, tokens_per_expert)
|
482 |
-
output_splits =
|
483 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
484 |
input_split_sizes = tokens_per_ep_rank.cpu().numpy().tolist()
|
485 |
-
dist.all_to_all(
|
486 |
-
|
487 |
-
|
|
|
|
|
|
|
|
|
|
|
488 |
s = 0
|
489 |
for i, k in enumerate(tokens_per_expert_group.cpu().numpy()):
|
490 |
gatherd_idxs[s : s + k] = i % self.experts_per_rank
|
@@ -494,8 +592,10 @@ class DeepseekV3MoE(nn.Module):
|
|
494 |
tokens_per_expert = tokens_per_expert_post_gather
|
495 |
|
496 |
tokens_per_expert = tokens_per_expert.cpu().numpy()
|
|
|
497 |
outputs = []
|
498 |
start_idx = 0
|
|
|
499 |
for i, num_tokens in enumerate(tokens_per_expert):
|
500 |
end_idx = start_idx + num_tokens
|
501 |
if num_tokens == 0:
|
@@ -505,19 +605,32 @@ class DeepseekV3MoE(nn.Module):
|
|
505 |
expert_out = expert(tokens_for_this_expert) if expert else tokens_for_this_expert
|
506 |
outputs.append(expert_out)
|
507 |
start_idx = end_idx
|
508 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
509 |
if self.ep_size > 1:
|
510 |
new_x = torch.empty_like(outs)
|
511 |
new_x[gatherd_idxs] = outs
|
512 |
gathered_tokens = new_x.new_empty(*sorted_tokens_shape)
|
513 |
-
dist.all_to_all(
|
|
|
|
|
|
|
514 |
outs = gathered_tokens
|
|
|
515 |
new_x = torch.empty_like(outs)
|
516 |
new_x[idxs] = outs
|
517 |
-
final_out = (
|
518 |
-
|
519 |
-
|
520 |
-
|
|
|
|
|
|
|
521 |
return final_out
|
522 |
|
523 |
|
@@ -530,7 +643,9 @@ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
530 |
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
531 |
if n_rep == 1:
|
532 |
return hidden_states
|
533 |
-
hidden_states = hidden_states[:, :, None, :, :].expand(
|
|
|
|
|
534 |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
535 |
|
536 |
|
@@ -562,59 +677,96 @@ class DeepseekV3Attention(nn.Module):
|
|
562 |
|
563 |
self.is_causal = True
|
564 |
|
|
|
565 |
if self.q_lora_rank is None:
|
566 |
-
self.q_proj = nn.Linear(
|
|
|
|
|
567 |
else:
|
568 |
-
self.q_a_proj = nn.Linear(
|
|
|
|
|
569 |
self.q_a_layernorm = DeepseekV3RMSNorm(config.q_lora_rank)
|
570 |
-
self.q_b_proj = nn.Linear(
|
|
|
|
|
571 |
|
572 |
-
|
573 |
-
|
574 |
-
|
|
|
|
|
|
|
575 |
self.kv_a_layernorm = DeepseekV3RMSNorm(config.kv_lora_rank)
|
576 |
-
self.kv_b_proj = nn.Linear(
|
577 |
-
|
578 |
-
|
|
|
|
|
579 |
|
|
|
580 |
self.o_proj = nn.Linear(self.num_heads * self.v_head_dim, self.hidden_size, bias=config.attention_bias)
|
581 |
|
|
|
582 |
self._init_rope()
|
583 |
|
|
|
584 |
self.softmax_scale = self.q_head_dim ** (-0.5)
|
585 |
if self.config.rope_scaling is not None:
|
|
|
586 |
mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0)
|
587 |
scaling_factor = self.config.rope_scaling["factor"]
|
588 |
if mscale_all_dim:
|
|
|
589 |
self.softmax_scale *= yarn_get_mscale(scaling_factor, mscale_all_dim) ** 2
|
590 |
|
591 |
def _init_rope(self):
|
|
|
|
|
|
|
592 |
if self.config.rope_scaling is None:
|
593 |
-
self.rotary_emb = DeepseekV3RotaryEmbedding(
|
594 |
-
|
595 |
-
|
|
|
|
|
596 |
else:
|
597 |
scaling_type = self.config.rope_scaling["type"]
|
598 |
scaling_factor = self.config.rope_scaling["factor"]
|
|
|
599 |
if scaling_type == "linear":
|
600 |
-
self.rotary_emb = DeepseekV3LinearScalingRotaryEmbedding(
|
601 |
-
|
602 |
-
|
603 |
-
|
|
|
|
|
604 |
elif scaling_type == "dynamic":
|
605 |
-
self.rotary_emb = DeepseekV3DynamicNTKScalingRotaryEmbedding(
|
606 |
-
|
607 |
-
|
608 |
-
|
|
|
|
|
609 |
elif scaling_type == "yarn":
|
610 |
-
kwargs = {
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
618 |
else:
|
619 |
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
620 |
|
@@ -628,10 +780,17 @@ class DeepseekV3Attention(nn.Module):
|
|
628 |
use_cache: bool = False,
|
629 |
**kwargs,
|
630 |
):
|
|
|
|
|
|
|
631 |
if "padding_mask" in kwargs:
|
632 |
-
warnings.warn(
|
|
|
|
|
|
|
633 |
bsz, q_len, _ = hidden_states.size()
|
634 |
|
|
|
635 |
if self.q_lora_rank is None:
|
636 |
q = self.q_proj(hidden_states)
|
637 |
else:
|
@@ -639,51 +798,75 @@ class DeepseekV3Attention(nn.Module):
|
|
639 |
q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
|
640 |
q_nope, q_pe = torch.split(q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
|
641 |
|
|
|
642 |
compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
|
643 |
-
compressed_kv, k_pe = torch.split(
|
|
|
|
|
644 |
k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
|
645 |
-
kv = (
|
646 |
-
|
647 |
-
|
648 |
-
|
|
|
|
|
|
|
|
|
649 |
kv_seq_len = value_states.shape[-2]
|
650 |
if past_key_value is not None:
|
651 |
if self.layer_idx is None:
|
652 |
-
raise ValueError(
|
|
|
|
|
653 |
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
654 |
|
655 |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
|
|
|
|
656 |
q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
|
657 |
|
658 |
query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
|
659 |
-
query_states[:, :, :, :self.qk_nope_head_dim] = q_nope
|
660 |
query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
|
661 |
|
662 |
key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
|
663 |
-
key_states[:, :, :, :self.qk_nope_head_dim] = k_nope
|
664 |
key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
|
665 |
|
666 |
if past_key_value is not None:
|
667 |
-
cache_kwargs = {"sin": sin, "cos": cos}
|
668 |
-
key_states, value_states = past_key_value.update(
|
|
|
|
|
|
|
|
|
|
|
669 |
|
670 |
-
attn_weights = (torch.matmul(query_states, key_states.transpose(2, 3)) * self.softmax_scale)
|
671 |
if attention_mask is not None:
|
672 |
attn_weights = attn_weights + attention_mask
|
673 |
-
|
674 |
-
|
|
|
|
|
|
|
|
|
675 |
attn_output = torch.matmul(attn_weights, value_states)
|
676 |
-
|
|
|
|
|
|
|
677 |
attn_output = self.o_proj(attn_output)
|
678 |
|
679 |
if not output_attentions:
|
680 |
attn_weights = None
|
|
|
681 |
return attn_output, attn_weights, past_key_value
|
682 |
|
683 |
|
684 |
class DeepseekV3FlashAttention2(DeepseekV3Attention):
|
685 |
"""
|
686 |
-
DeepseekV3 flash attention module
|
|
|
687 |
"""
|
688 |
def __init__(self, *args, **kwargs):
|
689 |
super().__init__(*args, **kwargs)
|
@@ -699,11 +882,14 @@ class DeepseekV3FlashAttention2(DeepseekV3Attention):
|
|
699 |
use_cache: bool = False,
|
700 |
**kwargs,
|
701 |
):
|
|
|
702 |
if "padding_mask" in kwargs:
|
703 |
-
warnings.warn(
|
|
|
|
|
704 |
attention_mask = kwargs.pop("padding_mask")
|
705 |
|
706 |
-
output_attentions = False #
|
707 |
|
708 |
bsz, q_len, _ = hidden_states.shape
|
709 |
if self.q_lora_rank is None:
|
@@ -714,45 +900,64 @@ class DeepseekV3FlashAttention2(DeepseekV3Attention):
|
|
714 |
q_nope, q_pe = torch.split(q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
|
715 |
|
716 |
compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
|
717 |
-
compressed_kv, k_pe = torch.split(
|
|
|
|
|
718 |
k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
|
719 |
-
kv = (
|
720 |
-
|
721 |
-
|
722 |
-
|
|
|
|
|
|
|
|
|
723 |
kv_seq_len = value_states.shape[-2]
|
724 |
if past_key_value is not None:
|
725 |
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
|
|
726 |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
727 |
q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
|
728 |
|
729 |
query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
|
730 |
-
query_states[:, :, :, :self.qk_nope_head_dim] = q_nope
|
731 |
query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
|
732 |
|
733 |
key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
|
734 |
-
key_states[:, :, :, :self.qk_nope_head_dim] = k_nope
|
735 |
key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
|
736 |
|
737 |
if self.q_head_dim != self.v_head_dim:
|
|
|
738 |
value_states = F.pad(value_states, [0, self.q_head_dim - self.v_head_dim])
|
739 |
|
740 |
if past_key_value is not None:
|
741 |
-
cache_kwargs = {"sin": sin, "cos":
|
742 |
-
key_states, value_states = past_key_value.update(
|
|
|
|
|
743 |
|
|
|
744 |
query_states = query_states.transpose(1, 2)
|
745 |
key_states = key_states.transpose(1, 2)
|
746 |
value_states = value_states.transpose(1, 2)
|
747 |
|
748 |
dropout_rate = self.attention_dropout if self.training else 0.0
|
|
|
|
|
749 |
input_dtype = query_states.dtype
|
750 |
if input_dtype == torch.float32:
|
751 |
-
|
|
|
|
|
|
|
|
|
|
|
752 |
query_states = query_states.to(target_dtype)
|
753 |
key_states = key_states.to(target_dtype)
|
754 |
value_states = value_states.to(target_dtype)
|
755 |
|
|
|
756 |
attn_output = self._flash_attention_forward(
|
757 |
query_states,
|
758 |
key_states,
|
@@ -764,10 +969,12 @@ class DeepseekV3FlashAttention2(DeepseekV3Attention):
|
|
764 |
)
|
765 |
|
766 |
if self.q_head_dim != self.v_head_dim:
|
767 |
-
attn_output = attn_output[:, :, :, :self.v_head_dim]
|
768 |
|
|
|
769 |
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.v_head_dim)
|
770 |
attn_output = self.o_proj(attn_output)
|
|
|
771 |
return attn_output, None, past_key_value
|
772 |
|
773 |
def _flash_attention_forward(
|
@@ -780,9 +987,13 @@ class DeepseekV3FlashAttention2(DeepseekV3Attention):
|
|
780 |
dropout: float = 0.0,
|
781 |
softmax_scale: Optional[float] = None,
|
782 |
) -> torch.Tensor:
|
|
|
|
|
|
|
783 |
if not self._flash_attn_uses_top_left_mask:
|
784 |
causal = self.is_causal
|
785 |
else:
|
|
|
786 |
causal = self.is_causal and query_length != 1
|
787 |
|
788 |
if attention_mask is not None:
|
@@ -792,7 +1003,9 @@ class DeepseekV3FlashAttention2(DeepseekV3Attention):
|
|
792 |
value_states,
|
793 |
indices_q,
|
794 |
(cu_seqlens_q, cu_seqlens_k),
|
795 |
-
(max_seqlen_in_batch_q, max_seqlen_in_batch_k)) = self._upad_input(
|
|
|
|
|
796 |
attn_output_unpad = flash_attn_varlen_func(
|
797 |
query_states,
|
798 |
key_states,
|
@@ -805,7 +1018,9 @@ class DeepseekV3FlashAttention2(DeepseekV3Attention):
|
|
805 |
softmax_scale=softmax_scale,
|
806 |
causal=causal,
|
807 |
)
|
808 |
-
attn_output = pad_input(
|
|
|
|
|
809 |
else:
|
810 |
attn_output = flash_attn_func(
|
811 |
query_states,
|
@@ -815,6 +1030,7 @@ class DeepseekV3FlashAttention2(DeepseekV3Attention):
|
|
815 |
softmax_scale=softmax_scale,
|
816 |
causal=causal,
|
817 |
)
|
|
|
818 |
return attn_output
|
819 |
|
820 |
def _upad_input(
|
@@ -825,29 +1041,53 @@ class DeepseekV3FlashAttention2(DeepseekV3Attention):
|
|
825 |
attention_mask: torch.Tensor,
|
826 |
query_length: int,
|
827 |
):
|
|
|
|
|
|
|
828 |
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
829 |
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
830 |
|
831 |
-
key_layer = index_first_axis(
|
832 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
833 |
if query_length == kv_seq_len:
|
834 |
-
query_layer = index_first_axis(
|
|
|
|
|
|
|
835 |
cu_seqlens_q = cu_seqlens_k
|
836 |
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
837 |
indices_q = indices_k
|
838 |
elif query_length == 1:
|
839 |
max_seqlen_in_batch_q = 1
|
840 |
-
cu_seqlens_q = torch.arange(
|
|
|
|
|
841 |
indices_q = cu_seqlens_q[:-1]
|
842 |
query_layer = query_layer.squeeze(1)
|
843 |
else:
|
|
|
844 |
attention_mask = attention_mask[:, -query_length:]
|
845 |
-
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
|
846 |
-
|
847 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
848 |
|
849 |
|
850 |
-
# Attach attention classes in a dictionary for easy selection
|
851 |
ATTENTION_CLASSES = {
|
852 |
"eager": DeepseekV3Attention,
|
853 |
"flash_attention_2": DeepseekV3FlashAttention2,
|
@@ -865,15 +1105,27 @@ class DeepseekV3DecoderLayer(nn.Module):
|
|
865 |
def __init__(self, config: DeepseekV3Config, layer_idx: int):
|
866 |
super().__init__()
|
867 |
self.hidden_size = config.hidden_size
|
868 |
-
|
869 |
-
|
870 |
-
|
871 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
872 |
self.mlp = DeepseekV3MoE(config)
|
873 |
else:
|
874 |
self.mlp = DeepseekV3MLP(config)
|
875 |
-
|
876 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
877 |
|
878 |
def forward(
|
879 |
self,
|
@@ -886,10 +1138,14 @@ class DeepseekV3DecoderLayer(nn.Module):
|
|
886 |
**kwargs
|
887 |
):
|
888 |
"""
|
889 |
-
Forward pass for one Deepseek decoder layer.
|
890 |
"""
|
891 |
residual = hidden_states
|
|
|
|
|
892 |
hidden_states = self.input_layernorm(hidden_states)
|
|
|
|
|
893 |
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
894 |
hidden_states=hidden_states,
|
895 |
attention_mask=attention_mask,
|
@@ -901,21 +1157,21 @@ class DeepseekV3DecoderLayer(nn.Module):
|
|
901 |
)
|
902 |
hidden_states = residual + hidden_states
|
903 |
|
|
|
904 |
residual = hidden_states
|
905 |
hidden_states = self.post_attention_layernorm(hidden_states)
|
906 |
-
# Dynamic Token Dropping
|
907 |
-
importance = torch.sigmoid(nn.Linear(self.hidden_size, 1).to(hidden_states.device)(hidden_states))
|
908 |
-
mask = (importance > (0.2 if self.training else 0.5)).float()
|
909 |
-
hidden_states = hidden_states * mask + (1 - mask) * hidden_states.detach()
|
910 |
|
|
|
911 |
hidden_states = self.mlp(hidden_states)
|
912 |
hidden_states = residual + hidden_states
|
913 |
|
914 |
outputs = (hidden_states,)
|
915 |
if output_attentions:
|
916 |
outputs += (self_attn_weights,)
|
|
|
917 |
if use_cache:
|
918 |
outputs += (present_key_value,)
|
|
|
919 |
return outputs
|
920 |
|
921 |
|
@@ -925,7 +1181,7 @@ class DeepseekV3DecoderLayer(nn.Module):
|
|
925 |
|
926 |
DeepseekV3_START_DOCSTRING = r"""
|
927 |
This model inherits from `PreTrainedModel`. Check the superclass documentation
|
928 |
-
for the generic methods the library implements for all its
|
929 |
"""
|
930 |
|
931 |
class DeepseekV3PreTrainedModel(PreTrainedModel):
|
@@ -938,6 +1194,7 @@ class DeepseekV3PreTrainedModel(PreTrainedModel):
|
|
938 |
_supports_cache_class = True
|
939 |
|
940 |
def _init_weights(self, module):
|
|
|
941 |
std = self.config.initializer_range
|
942 |
if isinstance(module, nn.Linear):
|
943 |
module.weight.data.normal_(mean=0.0, std=std)
|
@@ -960,32 +1217,41 @@ DeepseekV3_INPUTS_DOCSTRING = r"""
|
|
960 |
input_ids (torch.LongTensor): shape `(batch_size, sequence_length)`
|
961 |
attention_mask (torch.Tensor): shape `(batch_size, sequence_length)` or `(batch_size, 1, seq_len, seq_len)`, optional.
|
962 |
position_ids (torch.LongTensor): shape `(batch_size, sequence_length)`, optional.
|
963 |
-
past_key_values (Cache or tuple(tuple(torch.FloatTensor)))
|
|
|
964 |
inputs_embeds (torch.FloatTensor): shape `(batch_size, sequence_length, hidden_size)`, optional.
|
965 |
-
use_cache (bool), optional
|
966 |
-
output_attentions (bool), optional
|
967 |
-
output_hidden_states (bool), optional
|
968 |
-
return_dict (bool), optional
|
969 |
"""
|
970 |
|
971 |
-
@add_start_docstrings(
|
|
|
|
|
|
|
972 |
class DeepseekV3Model(DeepseekV3PreTrainedModel):
|
973 |
"""
|
974 |
-
Transformer decoder consisting of config.num_hidden_layers layers. Each layer is a DeepseekV3DecoderLayer
|
975 |
"""
|
976 |
def __init__(self, config: DeepseekV3Config):
|
977 |
super().__init__(config)
|
978 |
self.padding_idx = config.pad_token_id
|
979 |
self.vocab_size = config.vocab_size
|
|
|
980 |
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
981 |
-
|
982 |
-
|
983 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
984 |
self.norm = DeepseekV3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
985 |
self.gradient_checkpointing = False
|
986 |
self.post_init()
|
987 |
-
# Enable Torch 2.x compile for the forward pass.
|
988 |
-
self.forward = torch.compile(self.forward, dynamic=True)
|
989 |
|
990 |
def get_input_embeddings(self) -> nn.Embedding:
|
991 |
return self.embed_tokens
|
@@ -1006,8 +1272,10 @@ class DeepseekV3Model(DeepseekV3PreTrainedModel):
|
|
1006 |
output_hidden_states: Optional[bool] = None,
|
1007 |
return_dict: Optional[bool] = None,
|
1008 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
|
|
1009 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1010 |
-
output_hidden_states = output_hidden_states if output_hidden_states is not None
|
|
|
1011 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1012 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1013 |
|
@@ -1029,17 +1297,29 @@ class DeepseekV3Model(DeepseekV3PreTrainedModel):
|
|
1029 |
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
1030 |
|
1031 |
if position_ids is None:
|
1032 |
-
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1033 |
-
position_ids = torch.arange(
|
|
|
|
|
|
|
|
|
|
|
1034 |
position_ids = position_ids.unsqueeze(0)
|
1035 |
|
1036 |
if inputs_embeds is None:
|
1037 |
inputs_embeds = self.embed_tokens(input_ids)
|
1038 |
|
|
|
1039 |
if self._use_flash_attention_2:
|
1040 |
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
1041 |
else:
|
1042 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
1043 |
|
1044 |
hidden_states = inputs_embeds
|
1045 |
|
@@ -1050,33 +1330,57 @@ class DeepseekV3Model(DeepseekV3PreTrainedModel):
|
|
1050 |
for idx, decoder_layer in enumerate(self.layers):
|
1051 |
if output_hidden_states:
|
1052 |
all_hidden_states += (hidden_states,)
|
|
|
|
|
1053 |
if self.gradient_checkpointing and self.training:
|
1054 |
def create_custom_forward(module):
|
1055 |
def custom_forward(*inputs):
|
1056 |
return module(*inputs, output_attentions=output_attentions, use_cache=use_cache)
|
1057 |
return custom_forward
|
1058 |
-
layer_outputs = torch.utils.checkpoint.checkpoint(
|
1059 |
-
|
|
|
|
|
|
|
|
|
|
|
1060 |
else:
|
1061 |
-
layer_outputs = decoder_layer(
|
1062 |
-
|
1063 |
-
|
1064 |
-
|
1065 |
-
|
1066 |
-
|
|
|
|
|
|
|
1067 |
hidden_states = layer_outputs[0]
|
1068 |
if use_cache:
|
1069 |
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
|
|
1070 |
if output_attentions:
|
1071 |
all_self_attns += (layer_outputs[1],)
|
|
|
1072 |
hidden_states = self.norm(hidden_states)
|
1073 |
if output_hidden_states:
|
1074 |
all_hidden_states += (hidden_states,)
|
1075 |
|
1076 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1077 |
|
1078 |
if not return_dict:
|
1079 |
-
return tuple(
|
|
|
|
|
|
|
|
|
|
|
1080 |
return BaseModelOutputWithPast(
|
1081 |
last_hidden_state=hidden_states,
|
1082 |
past_key_values=next_cache,
|
@@ -1097,7 +1401,7 @@ class DeepseekV3ForCausalLM(DeepseekV3PreTrainedModel):
|
|
1097 |
self.model = DeepseekV3Model(config)
|
1098 |
self.vocab_size = config.vocab_size
|
1099 |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1100 |
-
|
1101 |
self.post_init()
|
1102 |
|
1103 |
def get_input_embeddings(self) -> nn.Embedding:
|
@@ -1119,7 +1423,9 @@ class DeepseekV3ForCausalLM(DeepseekV3PreTrainedModel):
|
|
1119 |
return self.model
|
1120 |
|
1121 |
@add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING)
|
1122 |
-
@replace_return_docstrings(
|
|
|
|
|
1123 |
def forward(
|
1124 |
self,
|
1125 |
input_ids: Optional[torch.LongTensor] = None,
|
@@ -1133,39 +1439,43 @@ class DeepseekV3ForCausalLM(DeepseekV3PreTrainedModel):
|
|
1133 |
output_hidden_states: Optional[bool] = None,
|
1134 |
return_dict: Optional[bool] = None,
|
1135 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
|
|
|
|
|
|
|
|
|
1136 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1137 |
-
output_hidden_states = output_hidden_states if output_hidden_states is not None
|
|
|
1138 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1139 |
|
1140 |
-
#
|
1141 |
-
|
1142 |
-
|
1143 |
-
|
1144 |
-
|
1145 |
-
|
1146 |
-
|
1147 |
-
|
1148 |
-
|
1149 |
-
|
1150 |
-
|
1151 |
-
|
1152 |
-
|
1153 |
-
use_cache=use_cache,
|
1154 |
-
output_attentions=output_attentions,
|
1155 |
-
output_hidden_states=output_hidden_states,
|
1156 |
-
return_dict=return_dict,
|
1157 |
-
)
|
1158 |
hidden_states = outputs[0]
|
1159 |
-
logits = self.lm_head(hidden_states)
|
1160 |
-
|
1161 |
-
|
1162 |
loss = None
|
1163 |
if labels is not None:
|
|
|
1164 |
shift_logits = logits[..., :-1, :].contiguous()
|
1165 |
shift_labels = labels[..., 1:].contiguous()
|
|
|
1166 |
loss_fct = CrossEntropyLoss()
|
1167 |
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1168 |
-
shift_labels = shift_labels.view(-1)
|
|
|
1169 |
loss = loss_fct(shift_logits, shift_labels)
|
1170 |
|
1171 |
if not return_dict:
|
@@ -1188,6 +1498,9 @@ class DeepseekV3ForCausalLM(DeepseekV3PreTrainedModel):
|
|
1188 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1189 |
**kwargs
|
1190 |
):
|
|
|
|
|
|
|
1191 |
if past_key_values is not None:
|
1192 |
if isinstance(past_key_values, Cache):
|
1193 |
cache_length = past_key_values.get_seq_length()
|
@@ -1196,37 +1509,50 @@ class DeepseekV3ForCausalLM(DeepseekV3PreTrainedModel):
|
|
1196 |
else:
|
1197 |
cache_length = past_length = past_key_values[0][0].shape[2]
|
1198 |
max_cache_length = None
|
|
|
1199 |
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1200 |
-
|
|
|
1201 |
elif past_length < input_ids.shape[1]:
|
1202 |
input_ids = input_ids[:, past_length:]
|
|
|
1203 |
if max_cache_length is not None and attention_mask is not None:
|
1204 |
if cache_length + input_ids.shape[1] > max_cache_length:
|
1205 |
attention_mask = attention_mask[:, -max_cache_length:]
|
|
|
1206 |
position_ids = kwargs.get("position_ids", None)
|
1207 |
if attention_mask is not None and position_ids is None:
|
1208 |
position_ids = attention_mask.long().cumsum(-1) - 1
|
1209 |
position_ids.masked_fill_(attention_mask == 0, 1)
|
1210 |
if past_key_values:
|
1211 |
-
position_ids = position_ids[:, -input_ids.shape[1]:]
|
|
|
|
|
1212 |
if inputs_embeds is not None and past_key_values is None:
|
1213 |
model_inputs = {"inputs_embeds": inputs_embeds}
|
1214 |
else:
|
1215 |
model_inputs = {"input_ids": input_ids}
|
1216 |
-
|
1217 |
-
|
1218 |
-
|
1219 |
-
|
1220 |
-
|
1221 |
-
|
|
|
|
|
|
|
1222 |
return model_inputs
|
1223 |
|
1224 |
@staticmethod
|
1225 |
def _reorder_cache(past_key_values: Tuple, beam_idx: torch.Tensor) -> Tuple:
|
1226 |
reordered_past = ()
|
1227 |
for layer_past in past_key_values:
|
1228 |
-
reordered_past += (
|
1229 |
-
|
|
|
|
|
|
|
|
|
1230 |
return reordered_past
|
1231 |
|
1232 |
|
@@ -1247,6 +1573,7 @@ class DeepseekV3ForSequenceClassification(DeepseekV3PreTrainedModel):
|
|
1247 |
self.num_labels = config.num_labels
|
1248 |
self.model = DeepseekV3Model(config)
|
1249 |
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
|
|
1250 |
self.post_init()
|
1251 |
|
1252 |
def get_input_embeddings(self) -> nn.Embedding:
|
@@ -1269,6 +1596,7 @@ class DeepseekV3ForSequenceClassification(DeepseekV3PreTrainedModel):
|
|
1269 |
output_hidden_states: Optional[bool] = None,
|
1270 |
return_dict: Optional[bool] = None,
|
1271 |
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
|
|
1272 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1273 |
transformer_outputs = self.model(
|
1274 |
input_ids,
|
@@ -1289,17 +1617,24 @@ class DeepseekV3ForSequenceClassification(DeepseekV3PreTrainedModel):
|
|
1289 |
else:
|
1290 |
batch_size = inputs_embeds.shape[0]
|
1291 |
|
|
|
1292 |
if self.config.pad_token_id is None and batch_size != 1:
|
1293 |
-
raise ValueError(
|
|
|
|
|
1294 |
if self.config.pad_token_id is None:
|
1295 |
sequence_lengths = -1
|
1296 |
else:
|
1297 |
if input_ids is not None:
|
1298 |
-
sequence_lengths = (
|
|
|
|
|
1299 |
else:
|
1300 |
sequence_lengths = -1
|
1301 |
|
1302 |
-
pooled_logits = logits[
|
|
|
|
|
1303 |
|
1304 |
loss = None
|
1305 |
if labels is not None:
|
@@ -1311,12 +1646,18 @@ class DeepseekV3ForSequenceClassification(DeepseekV3PreTrainedModel):
|
|
1311 |
self.config.problem_type = "single_label_classification"
|
1312 |
else:
|
1313 |
self.config.problem_type = "multi_label_classification"
|
|
|
1314 |
if self.config.problem_type == "regression":
|
1315 |
loss_fct = MSELoss()
|
1316 |
-
|
|
|
|
|
|
|
1317 |
elif self.config.problem_type == "single_label_classification":
|
1318 |
loss_fct = CrossEntropyLoss()
|
1319 |
-
loss = loss_fct(
|
|
|
|
|
1320 |
elif self.config.problem_type == "multi_label_classification":
|
1321 |
loss_fct = BCEWithLogitsLoss()
|
1322 |
loss = loss_fct(pooled_logits, labels)
|
|
|
54 |
|
55 |
# If flash-attn is available
|
56 |
if is_flash_attn_2_available():
|
57 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
58 |
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
59 |
|
60 |
# This helps make `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
|
61 |
if is_torch_fx_available():
|
62 |
if not is_torch_greater_or_equal_than_1_13:
|
63 |
import torch.fx
|
64 |
+
|
65 |
_prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
|
66 |
|
67 |
_CONFIG_FOR_DOC = "DeepseekV3Config"
|
68 |
|
69 |
+
|
70 |
# ==============================================================================
|
71 |
# Rotary Embedding Helpers
|
72 |
# ==============================================================================
|
|
|
82 |
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
83 |
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
84 |
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
85 |
+
# Build prefix sums
|
86 |
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
87 |
return indices, cu_seqlens, max_seqlen_in_batch
|
88 |
|
89 |
+
|
90 |
# ==============================================================================
|
91 |
# Normalization Layers
|
92 |
# ==============================================================================
|
|
|
102 |
self.variance_epsilon = eps
|
103 |
|
104 |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
105 |
+
# IMPROVEMENT: Provide type-safety & potential in-place usage
|
106 |
input_dtype = hidden_states.dtype
|
107 |
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
108 |
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
109 |
return (self.weight * hidden_states).to(input_dtype)
|
110 |
|
111 |
+
|
112 |
ALL_LAYERNORM_LAYERS.append(DeepseekV3RMSNorm)
|
113 |
|
114 |
+
|
115 |
# ==============================================================================
|
116 |
# Rotary Embeddings
|
117 |
# ==============================================================================
|
|
|
132 |
self.max_position_embeddings = max_position_embeddings
|
133 |
self.base = base
|
134 |
|
135 |
+
inv_freq = 1.0 / (
|
136 |
+
self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
|
137 |
+
)
|
138 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
139 |
+
|
140 |
+
# Build here to make `torch.jit.trace` work.
|
141 |
self._set_cos_sin_cache(
|
142 |
seq_len=max_position_embeddings,
|
143 |
device=self.inv_freq.device,
|
144 |
dtype=torch.get_default_dtype(),
|
145 |
)
|
146 |
+
self.max_seq_len_cached = None
|
147 |
|
148 |
def _set_cos_sin_cache(self, seq_len: int, device: torch.device, dtype: torch.dtype):
|
149 |
self.max_seq_len_cached = seq_len
|
150 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
151 |
+
|
152 |
+
freqs = torch.outer(t, self.inv_freq.to(t.device))
|
153 |
+
# Different from paper, but uses a different permutation to achieve the same effect
|
154 |
emb = torch.cat((freqs, freqs), dim=-1)
|
155 |
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
156 |
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
|
|
159 |
"""
|
160 |
x: [batch_size, num_heads, seq_len, head_size]
|
161 |
"""
|
162 |
+
if (self.max_seq_len_cached is None) or (seq_len and seq_len > self.max_seq_len_cached):
|
163 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
164 |
+
|
165 |
+
return (self.cos_cached[:seq_len].to(dtype=x.dtype),
|
166 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype))
|
|
|
167 |
|
168 |
|
169 |
class DeepseekV3LinearScalingRotaryEmbedding(DeepseekV3RotaryEmbedding):
|
170 |
"""
|
171 |
+
RoPE extended with linear scaling. Credits to the Reddit user /u/kaiokendev
|
172 |
"""
|
173 |
def __init__(
|
174 |
self,
|
|
|
183 |
|
184 |
def _set_cos_sin_cache(self, seq_len: int, device: torch.device, dtype: torch.dtype):
|
185 |
self.max_seq_len_cached = seq_len
|
186 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
187 |
+
t = t / self.scaling_factor
|
188 |
freqs = torch.outer(t, self.inv_freq)
|
189 |
emb = torch.cat((freqs, freqs), dim=-1)
|
190 |
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
|
|
194 |
class DeepseekV3DynamicNTKScalingRotaryEmbedding(DeepseekV3RotaryEmbedding):
|
195 |
"""
|
196 |
RoPE extended with Dynamic NTK scaling.
|
197 |
+
Credits to the Reddit users /u/bloc97 and /u/emozilla
|
198 |
"""
|
199 |
def __init__(
|
200 |
self,
|
|
|
209 |
|
210 |
def _set_cos_sin_cache(self, seq_len: int, device: torch.device, dtype: torch.dtype):
|
211 |
self.max_seq_len_cached = seq_len
|
212 |
+
|
213 |
if seq_len > self.max_position_embeddings:
|
214 |
base = self.base * (
|
215 |
(self.scaling_factor * seq_len / self.max_position_embeddings)
|
216 |
- (self.scaling_factor - 1)
|
217 |
) ** (self.dim / (self.dim - 2))
|
218 |
+
inv_freq = 1.0 / (
|
219 |
+
base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
|
220 |
+
)
|
221 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
222 |
+
|
223 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
224 |
freqs = torch.outer(t, self.inv_freq)
|
225 |
emb = torch.cat((freqs, freqs), dim=-1)
|
226 |
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
227 |
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
228 |
|
229 |
|
230 |
+
# Extra Yarn-based formulas, as in your original code
|
231 |
def yarn_find_correction_dim(
|
232 |
num_rotations: float,
|
233 |
dim: int,
|
234 |
base: int = 10000,
|
235 |
max_position_embeddings: int = 2048
|
236 |
):
|
237 |
+
return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (
|
238 |
+
2 * math.log(base)
|
239 |
+
)
|
240 |
|
241 |
|
242 |
def yarn_find_correction_range(
|
|
|
246 |
base: int = 10000,
|
247 |
max_position_embeddings: int = 2048
|
248 |
):
|
249 |
+
low = math.floor(
|
250 |
+
yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings)
|
251 |
+
)
|
252 |
+
high = math.ceil(
|
253 |
+
yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings)
|
254 |
+
)
|
255 |
+
# Clamped range
|
256 |
return max(low, 0), min(high, dim - 1)
|
257 |
|
258 |
|
|
|
298 |
def _set_cos_sin_cache(self, seq_len: int, device: torch.device, dtype: torch.dtype):
|
299 |
self.max_seq_len_cached = seq_len
|
300 |
dim = self.dim
|
301 |
+
|
302 |
+
freq_extra = 1.0 / (
|
303 |
+
self.base ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
|
304 |
+
)
|
305 |
+
freq_inter = 1.0 / (
|
306 |
+
self.scaling_factor
|
307 |
+
* self.base ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
|
308 |
+
)
|
309 |
+
|
310 |
+
low, high = yarn_find_correction_range(
|
311 |
+
self.beta_fast,
|
312 |
+
self.beta_slow,
|
313 |
+
dim,
|
314 |
+
self.base,
|
315 |
+
self.original_max_position_embeddings,
|
316 |
+
)
|
317 |
inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2).to(device=device, dtype=torch.float32)
|
318 |
inv_freq = freq_inter * (1 - inv_freq_mask) + freq_extra * inv_freq_mask
|
319 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
320 |
+
|
321 |
t = torch.arange(seq_len, device=device, dtype=torch.float32)
|
322 |
freqs = torch.outer(t, inv_freq)
|
323 |
+
_mscale = float(
|
324 |
+
yarn_get_mscale(self.scaling_factor, self.mscale)
|
325 |
+
/ yarn_get_mscale(self.scaling_factor, self.mscale_all_dim)
|
326 |
+
)
|
327 |
+
|
328 |
emb = torch.cat((freqs, freqs), dim=-1)
|
329 |
self.register_buffer("cos_cached", (emb.cos() * _mscale).to(dtype), persistent=False)
|
330 |
self.register_buffer("sin_cached", (emb.sin() * _mscale).to(dtype), persistent=False)
|
331 |
|
332 |
|
333 |
+
# ==============================================================================
|
334 |
# General Rotary helper functions
|
335 |
# ==============================================================================
|
336 |
|
|
|
380 |
super().__init__()
|
381 |
self.config = config
|
382 |
self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
|
383 |
+
self.intermediate_size = (
|
384 |
+
config.intermediate_size if intermediate_size is None else intermediate_size
|
385 |
+
)
|
386 |
|
387 |
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
388 |
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
|
|
413 |
self.norm_topk_prob = config.norm_topk_prob
|
414 |
self.gating_dim = config.hidden_size
|
415 |
|
416 |
+
# Gating weight
|
417 |
self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim)))
|
418 |
+
|
419 |
if self.topk_method == "noaux_tc":
|
420 |
+
self.e_score_correction_bias = nn.Parameter(
|
421 |
+
torch.empty((self.n_routed_experts))
|
422 |
+
)
|
423 |
+
|
424 |
self.reset_parameters()
|
425 |
|
426 |
def reset_parameters(self):
|
|
|
433 |
Compute gating scores and select top-k experts.
|
434 |
"""
|
435 |
bsz, seq_len, h = hidden_states.shape
|
436 |
+
|
437 |
+
# 1) Compute gating scores
|
438 |
logits = F.linear(hidden_states.float(), self.weight.float(), None)
|
439 |
if self.scoring_func == "sigmoid":
|
440 |
scores = logits.sigmoid()
|
441 |
else:
|
442 |
+
raise NotImplementedError(
|
443 |
+
f"Unsupported gating scoring function: {self.scoring_func}"
|
444 |
+
)
|
445 |
|
446 |
+
# 2) TopK selection
|
447 |
if self.topk_method == "noaux_tc":
|
448 |
+
# This is a specialized approach from your original code
|
449 |
+
# IMPROVEMENT: Could consider generalizing to top2 gating or other advanced techniques
|
450 |
scores_for_choice = scores.view(bsz * seq_len, -1) + self.e_score_correction_bias.unsqueeze(0)
|
451 |
+
group_scores = (
|
452 |
+
scores_for_choice.view(bsz * seq_len, self.n_group, -1).topk(2, dim=-1)[0].sum(dim=-1)
|
453 |
+
)
|
454 |
+
group_idx = torch.topk(
|
455 |
+
group_scores, k=self.topk_group, dim=-1, sorted=False
|
456 |
+
)[1] # [n, top_k_group]
|
457 |
group_mask = torch.zeros_like(group_scores)
|
458 |
group_mask.scatter_(1, group_idx, 1)
|
459 |
+
score_mask = group_mask.unsqueeze(-1).expand(
|
460 |
+
bsz * seq_len, self.n_group, self.n_routed_experts // self.n_group
|
461 |
+
).reshape(bsz * seq_len, -1)
|
462 |
tmp_scores = scores_for_choice.masked_fill(~score_mask.bool(), 0.0)
|
463 |
_, topk_idx = torch.topk(tmp_scores, k=self.top_k, dim=-1, sorted=False)
|
464 |
topk_weight = scores_for_choice.gather(1, topk_idx)
|
465 |
else:
|
466 |
+
raise NotImplementedError(
|
467 |
+
f"Unsupported topk_method: {self.topk_method}"
|
468 |
+
)
|
469 |
|
470 |
+
# 3) Norm gate to sum to 1 if top_k > 1
|
471 |
if self.top_k > 1 and self.norm_topk_prob:
|
472 |
denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
|
473 |
topk_weight = topk_weight / denominator
|
474 |
|
475 |
+
# 4) Multiply scaling factor
|
476 |
topk_weight = topk_weight * self.routed_scaling_factor
|
477 |
|
478 |
return topk_idx, topk_weight
|
|
|
495 |
self.experts_per_rank = config.n_routed_experts // config.ep_size
|
496 |
self.ep_rank = dist.get_rank()
|
497 |
|
498 |
+
# Build experts
|
499 |
experts_list = []
|
500 |
for i in range(config.n_routed_experts):
|
501 |
+
# only build if belongs to current rank
|
502 |
if self.ep_size > 1:
|
503 |
if i >= self.ep_rank * self.experts_per_rank and i < (self.ep_rank + 1) * self.experts_per_rank:
|
504 |
+
experts_list.append(
|
505 |
+
DeepseekV3MLP(config, intermediate_size=config.moe_intermediate_size)
|
506 |
+
)
|
507 |
else:
|
508 |
experts_list.append(None)
|
509 |
else:
|
510 |
+
experts_list.append(
|
511 |
+
DeepseekV3MLP(config, intermediate_size=config.moe_intermediate_size)
|
512 |
+
)
|
513 |
self.experts = nn.ModuleList(experts_list)
|
514 |
|
515 |
+
# Gate
|
516 |
self.gate = MoEGate(config)
|
517 |
|
518 |
+
# Optionally shared experts
|
519 |
if config.n_shared_experts is not None:
|
520 |
intermediate_size = config.moe_intermediate_size * config.n_shared_experts
|
521 |
+
self.shared_experts = DeepseekV3MLP(
|
522 |
+
config=config, intermediate_size=intermediate_size
|
523 |
+
)
|
524 |
else:
|
525 |
self.shared_experts = None
|
526 |
|
527 |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
528 |
identity = hidden_states
|
529 |
orig_shape = hidden_states.shape
|
530 |
+
|
531 |
topk_idx, topk_weight = self.gate(hidden_states)
|
532 |
+
# Flatten
|
533 |
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
|
534 |
+
|
535 |
+
# Inference
|
536 |
if not self.training:
|
537 |
y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(*orig_shape)
|
538 |
else:
|
539 |
+
# For training, you’d typically do a distributed MoE approach
|
540 |
+
# or a specialized approach from your original code.
|
541 |
+
# This placeholder just calls `moe_infer` for demonstration.
|
542 |
y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(*orig_shape)
|
543 |
+
|
544 |
+
# Add shared experts if present
|
545 |
if self.shared_experts is not None:
|
546 |
y = y + self.shared_experts(identity)
|
547 |
+
|
548 |
return y
|
549 |
|
550 |
@torch.no_grad()
|
551 |
def moe_infer(self, x: torch.Tensor, topk_ids: torch.Tensor, topk_weight: torch.Tensor) -> torch.Tensor:
|
552 |
"""
|
553 |
+
MoE inference path for each token. This code can be parallelized or distributed for better performance.
|
|
|
554 |
"""
|
555 |
cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts)))
|
556 |
cnts.scatter_(1, topk_ids, 1)
|
|
|
559 |
sorted_tokens = x[idxs // topk_ids.shape[1]]
|
560 |
sorted_tokens_shape = sorted_tokens.shape
|
561 |
|
562 |
+
# Handle distribution if ep_size>1
|
563 |
if self.ep_size > 1:
|
564 |
tokens_per_ep_rank = tokens_per_expert.view(self.ep_size, -1).sum(dim=1)
|
565 |
tokens_per_expert_group = tokens_per_expert.new_empty(tokens_per_expert.shape[0])
|
566 |
dist.all_to_all_single(tokens_per_expert_group, tokens_per_expert)
|
567 |
+
output_splits = (
|
568 |
+
tokens_per_expert_group.view(self.ep_size, self.experts_per_rank)
|
569 |
+
.sum(1)
|
570 |
+
.cpu()
|
571 |
+
.numpy()
|
572 |
+
.tolist()
|
573 |
+
)
|
574 |
+
gathered_tokens = sorted_tokens.new_empty(
|
575 |
+
tokens_per_expert_group.sum(dim=0).cpu().item(), sorted_tokens.shape[1]
|
576 |
+
)
|
577 |
input_split_sizes = tokens_per_ep_rank.cpu().numpy().tolist()
|
578 |
+
dist.all_to_all(
|
579 |
+
list(gathered_tokens.split(input_split_sizes)),
|
580 |
+
list(sorted_tokens.split(input_split_sizes)),
|
581 |
+
)
|
582 |
+
tokens_per_expert_post_gather = tokens_per_expert_group.view(
|
583 |
+
self.ep_size, self.experts_per_rank
|
584 |
+
).sum(dim=0)
|
585 |
+
gatherd_idxs = np.zeros(shape=(gathered_tokens.shape[0],), dtype=np.int32)
|
586 |
s = 0
|
587 |
for i, k in enumerate(tokens_per_expert_group.cpu().numpy()):
|
588 |
gatherd_idxs[s : s + k] = i % self.experts_per_rank
|
|
|
592 |
tokens_per_expert = tokens_per_expert_post_gather
|
593 |
|
594 |
tokens_per_expert = tokens_per_expert.cpu().numpy()
|
595 |
+
|
596 |
outputs = []
|
597 |
start_idx = 0
|
598 |
+
# Forward pass for each expert’s assigned tokens
|
599 |
for i, num_tokens in enumerate(tokens_per_expert):
|
600 |
end_idx = start_idx + num_tokens
|
601 |
if num_tokens == 0:
|
|
|
605 |
expert_out = expert(tokens_for_this_expert) if expert else tokens_for_this_expert
|
606 |
outputs.append(expert_out)
|
607 |
start_idx = end_idx
|
608 |
+
|
609 |
+
outs = (
|
610 |
+
torch.cat(outputs, dim=0)
|
611 |
+
if len(outputs)
|
612 |
+
else sorted_tokens.new_empty(0)
|
613 |
+
)
|
614 |
+
|
615 |
if self.ep_size > 1:
|
616 |
new_x = torch.empty_like(outs)
|
617 |
new_x[gatherd_idxs] = outs
|
618 |
gathered_tokens = new_x.new_empty(*sorted_tokens_shape)
|
619 |
+
dist.all_to_all(
|
620 |
+
list(gathered_tokens.split(input_split_sizes)),
|
621 |
+
list(new_x.split(output_splits)),
|
622 |
+
)
|
623 |
outs = gathered_tokens
|
624 |
+
|
625 |
new_x = torch.empty_like(outs)
|
626 |
new_x[idxs] = outs
|
627 |
+
final_out = (
|
628 |
+
new_x.view(*topk_ids.shape, -1)
|
629 |
+
.type(topk_weight.dtype)
|
630 |
+
.mul_(topk_weight.unsqueeze(dim=-1))
|
631 |
+
.sum(dim=1)
|
632 |
+
.type(new_x.dtype)
|
633 |
+
)
|
634 |
return final_out
|
635 |
|
636 |
|
|
|
643 |
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
644 |
if n_rep == 1:
|
645 |
return hidden_states
|
646 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(
|
647 |
+
batch, num_key_value_heads, n_rep, slen, head_dim
|
648 |
+
)
|
649 |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
650 |
|
651 |
|
|
|
677 |
|
678 |
self.is_causal = True
|
679 |
|
680 |
+
# Q-proj
|
681 |
if self.q_lora_rank is None:
|
682 |
+
self.q_proj = nn.Linear(
|
683 |
+
self.hidden_size, self.num_heads * self.q_head_dim, bias=False
|
684 |
+
)
|
685 |
else:
|
686 |
+
self.q_a_proj = nn.Linear(
|
687 |
+
self.hidden_size, config.q_lora_rank, bias=config.attention_bias
|
688 |
+
)
|
689 |
self.q_a_layernorm = DeepseekV3RMSNorm(config.q_lora_rank)
|
690 |
+
self.q_b_proj = nn.Linear(
|
691 |
+
config.q_lora_rank, self.num_heads * self.q_head_dim, bias=False
|
692 |
+
)
|
693 |
|
694 |
+
# K,V-proj (MQA style)
|
695 |
+
self.kv_a_proj_with_mqa = nn.Linear(
|
696 |
+
self.hidden_size,
|
697 |
+
config.kv_lora_rank + config.qk_rope_head_dim,
|
698 |
+
bias=config.attention_bias,
|
699 |
+
)
|
700 |
self.kv_a_layernorm = DeepseekV3RMSNorm(config.kv_lora_rank)
|
701 |
+
self.kv_b_proj = nn.Linear(
|
702 |
+
config.kv_lora_rank,
|
703 |
+
self.num_heads * (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim),
|
704 |
+
bias=False,
|
705 |
+
)
|
706 |
|
707 |
+
# Out proj
|
708 |
self.o_proj = nn.Linear(self.num_heads * self.v_head_dim, self.hidden_size, bias=config.attention_bias)
|
709 |
|
710 |
+
# Build the rotary embedding
|
711 |
self._init_rope()
|
712 |
|
713 |
+
# IMPROVEMENT: Custom softmax scaling, adapt for Yarn scaling
|
714 |
self.softmax_scale = self.q_head_dim ** (-0.5)
|
715 |
if self.config.rope_scaling is not None:
|
716 |
+
# E.g. yarn-based scaling can factor in additional multipliers
|
717 |
mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0)
|
718 |
scaling_factor = self.config.rope_scaling["factor"]
|
719 |
if mscale_all_dim:
|
720 |
+
# Simple example using the Yarn approach
|
721 |
self.softmax_scale *= yarn_get_mscale(scaling_factor, mscale_all_dim) ** 2
|
722 |
|
723 |
def _init_rope(self):
|
724 |
+
"""
|
725 |
+
Initializes RoPE depending on scaling type: linear, dynamic, yarn, etc.
|
726 |
+
"""
|
727 |
if self.config.rope_scaling is None:
|
728 |
+
self.rotary_emb = DeepseekV3RotaryEmbedding(
|
729 |
+
self.qk_rope_head_dim,
|
730 |
+
max_position_embeddings=self.max_position_embeddings,
|
731 |
+
base=self.rope_theta,
|
732 |
+
)
|
733 |
else:
|
734 |
scaling_type = self.config.rope_scaling["type"]
|
735 |
scaling_factor = self.config.rope_scaling["factor"]
|
736 |
+
|
737 |
if scaling_type == "linear":
|
738 |
+
self.rotary_emb = DeepseekV3LinearScalingRotaryEmbedding(
|
739 |
+
self.qk_rope_head_dim,
|
740 |
+
max_position_embeddings=self.max_position_embeddings,
|
741 |
+
scaling_factor=scaling_factor,
|
742 |
+
base=self.rope_theta,
|
743 |
+
)
|
744 |
elif scaling_type == "dynamic":
|
745 |
+
self.rotary_emb = DeepseekV3DynamicNTKScalingRotaryEmbedding(
|
746 |
+
self.qk_rope_head_dim,
|
747 |
+
max_position_embeddings=self.max_position_embeddings,
|
748 |
+
scaling_factor=scaling_factor,
|
749 |
+
base=self.rope_theta,
|
750 |
+
)
|
751 |
elif scaling_type == "yarn":
|
752 |
+
kwargs = {
|
753 |
+
key: self.config.rope_scaling[key]
|
754 |
+
for key in [
|
755 |
+
"original_max_position_embeddings",
|
756 |
+
"beta_fast",
|
757 |
+
"beta_slow",
|
758 |
+
"mscale",
|
759 |
+
"mscale_all_dim",
|
760 |
+
]
|
761 |
+
if key in self.config.rope_scaling
|
762 |
+
}
|
763 |
+
self.rotary_emb = DeepseekV3YarnRotaryEmbedding(
|
764 |
+
self.qk_rope_head_dim,
|
765 |
+
max_position_embeddings=self.max_position_embeddings,
|
766 |
+
scaling_factor=scaling_factor,
|
767 |
+
base=self.rope_theta,
|
768 |
+
**kwargs,
|
769 |
+
)
|
770 |
else:
|
771 |
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
772 |
|
|
|
780 |
use_cache: bool = False,
|
781 |
**kwargs,
|
782 |
):
|
783 |
+
"""
|
784 |
+
Standard forward pass for multi-headed self-attention.
|
785 |
+
"""
|
786 |
if "padding_mask" in kwargs:
|
787 |
+
warnings.warn(
|
788 |
+
"Passing `padding_mask` is deprecated. Use `attention_mask` instead."
|
789 |
+
)
|
790 |
+
|
791 |
bsz, q_len, _ = hidden_states.size()
|
792 |
|
793 |
+
# Q projection
|
794 |
if self.q_lora_rank is None:
|
795 |
q = self.q_proj(hidden_states)
|
796 |
else:
|
|
|
798 |
q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
|
799 |
q_nope, q_pe = torch.split(q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
|
800 |
|
801 |
+
# MQA: K,V from single projection
|
802 |
compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
|
803 |
+
compressed_kv, k_pe = torch.split(
|
804 |
+
compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
|
805 |
+
)
|
806 |
k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
|
807 |
+
kv = (
|
808 |
+
self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
|
809 |
+
.view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
|
810 |
+
.transpose(1, 2)
|
811 |
+
)
|
812 |
+
k_nope, value_states = torch.split(
|
813 |
+
kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
|
814 |
+
)
|
815 |
kv_seq_len = value_states.shape[-2]
|
816 |
if past_key_value is not None:
|
817 |
if self.layer_idx is None:
|
818 |
+
raise ValueError(
|
819 |
+
f"Missing `layer_idx` for caching. Provide layer_idx in {self.__class__.__name__}."
|
820 |
+
)
|
821 |
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
822 |
|
823 |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
824 |
+
|
825 |
+
# Apply rotary to query and key
|
826 |
q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
|
827 |
|
828 |
query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
|
829 |
+
query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
|
830 |
query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
|
831 |
|
832 |
key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
|
833 |
+
key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
|
834 |
key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
|
835 |
|
836 |
if past_key_value is not None:
|
837 |
+
cache_kwargs = {"sin": sin, "cos": cos} # for RoPE
|
838 |
+
key_states, value_states = past_key_value.update(
|
839 |
+
key_states, value_states, self.layer_idx, cache_kwargs
|
840 |
+
)
|
841 |
+
|
842 |
+
attn_weights = (torch.matmul(query_states, key_states.transpose(2, 3))
|
843 |
+
* self.softmax_scale)
|
844 |
|
|
|
845 |
if attention_mask is not None:
|
846 |
attn_weights = attn_weights + attention_mask
|
847 |
+
|
848 |
+
# Use float32 for more stable softmax
|
849 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
850 |
+
attn_weights = nn.functional.dropout(
|
851 |
+
attn_weights, p=self.attention_dropout, training=self.training
|
852 |
+
)
|
853 |
attn_output = torch.matmul(attn_weights, value_states)
|
854 |
+
|
855 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
856 |
+
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.v_head_dim)
|
857 |
+
|
858 |
attn_output = self.o_proj(attn_output)
|
859 |
|
860 |
if not output_attentions:
|
861 |
attn_weights = None
|
862 |
+
|
863 |
return attn_output, attn_weights, past_key_value
|
864 |
|
865 |
|
866 |
class DeepseekV3FlashAttention2(DeepseekV3Attention):
|
867 |
"""
|
868 |
+
DeepseekV3 flash attention module. Inherits the same Q/K/V projections from DeepseekV3Attention.
|
869 |
+
Only the forward pass changes to use flash_attn APIs.
|
870 |
"""
|
871 |
def __init__(self, *args, **kwargs):
|
872 |
super().__init__(*args, **kwargs)
|
|
|
882 |
use_cache: bool = False,
|
883 |
**kwargs,
|
884 |
):
|
885 |
+
# Overridden forward logic using flash attention
|
886 |
if "padding_mask" in kwargs:
|
887 |
+
warnings.warn(
|
888 |
+
"Passing `padding_mask` is deprecated. Use `attention_mask` instead."
|
889 |
+
)
|
890 |
attention_mask = kwargs.pop("padding_mask")
|
891 |
|
892 |
+
output_attentions = False # flash attn 2 doesn't expose attention probs
|
893 |
|
894 |
bsz, q_len, _ = hidden_states.shape
|
895 |
if self.q_lora_rank is None:
|
|
|
900 |
q_nope, q_pe = torch.split(q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
|
901 |
|
902 |
compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
|
903 |
+
compressed_kv, k_pe = torch.split(
|
904 |
+
compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
|
905 |
+
)
|
906 |
k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
|
907 |
+
kv = (
|
908 |
+
self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
|
909 |
+
.view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
|
910 |
+
.transpose(1, 2)
|
911 |
+
)
|
912 |
+
k_nope, value_states = torch.split(
|
913 |
+
kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
|
914 |
+
)
|
915 |
kv_seq_len = value_states.shape[-2]
|
916 |
if past_key_value is not None:
|
917 |
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
918 |
+
|
919 |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
920 |
q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
|
921 |
|
922 |
query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
|
923 |
+
query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
|
924 |
query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
|
925 |
|
926 |
key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
|
927 |
+
key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
|
928 |
key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
|
929 |
|
930 |
if self.q_head_dim != self.v_head_dim:
|
931 |
+
# Pad if needed
|
932 |
value_states = F.pad(value_states, [0, self.q_head_dim - self.v_head_dim])
|
933 |
|
934 |
if past_key_value is not None:
|
935 |
+
cache_kwargs = {"sin": sin, "cos": cos}
|
936 |
+
key_states, value_states = past_key_value.update(
|
937 |
+
key_states, value_states, self.layer_idx, cache_kwargs
|
938 |
+
)
|
939 |
|
940 |
+
# Prepare for flash-attn which needs [bsz, seqlen, n_heads, head_dim]
|
941 |
query_states = query_states.transpose(1, 2)
|
942 |
key_states = key_states.transpose(1, 2)
|
943 |
value_states = value_states.transpose(1, 2)
|
944 |
|
945 |
dropout_rate = self.attention_dropout if self.training else 0.0
|
946 |
+
|
947 |
+
# Possibly revert to original Q,K,V dtype if upcast to float32
|
948 |
input_dtype = query_states.dtype
|
949 |
if input_dtype == torch.float32:
|
950 |
+
# Attempt to revert to original param dtype if different
|
951 |
+
target_dtype = (
|
952 |
+
self.q_proj.weight.dtype
|
953 |
+
if self.q_lora_rank is None
|
954 |
+
else self.q_a_proj.weight.dtype
|
955 |
+
)
|
956 |
query_states = query_states.to(target_dtype)
|
957 |
key_states = key_states.to(target_dtype)
|
958 |
value_states = value_states.to(target_dtype)
|
959 |
|
960 |
+
# Flash attention pass
|
961 |
attn_output = self._flash_attention_forward(
|
962 |
query_states,
|
963 |
key_states,
|
|
|
969 |
)
|
970 |
|
971 |
if self.q_head_dim != self.v_head_dim:
|
972 |
+
attn_output = attn_output[:, :, :, : self.v_head_dim]
|
973 |
|
974 |
+
# [bsz, seqlen, n_heads, head_dim]
|
975 |
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.v_head_dim)
|
976 |
attn_output = self.o_proj(attn_output)
|
977 |
+
|
978 |
return attn_output, None, past_key_value
|
979 |
|
980 |
def _flash_attention_forward(
|
|
|
987 |
dropout: float = 0.0,
|
988 |
softmax_scale: Optional[float] = None,
|
989 |
) -> torch.Tensor:
|
990 |
+
"""
|
991 |
+
Wraps the flash-attn calls. If attention_mask has padding, we unpad first.
|
992 |
+
"""
|
993 |
if not self._flash_attn_uses_top_left_mask:
|
994 |
causal = self.is_causal
|
995 |
else:
|
996 |
+
# For flash_attn<2.1.0
|
997 |
causal = self.is_causal and query_length != 1
|
998 |
|
999 |
if attention_mask is not None:
|
|
|
1003 |
value_states,
|
1004 |
indices_q,
|
1005 |
(cu_seqlens_q, cu_seqlens_k),
|
1006 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k)) = self._upad_input(
|
1007 |
+
query_states, key_states, value_states, attention_mask, query_length
|
1008 |
+
)
|
1009 |
attn_output_unpad = flash_attn_varlen_func(
|
1010 |
query_states,
|
1011 |
key_states,
|
|
|
1018 |
softmax_scale=softmax_scale,
|
1019 |
causal=causal,
|
1020 |
)
|
1021 |
+
attn_output = pad_input(
|
1022 |
+
attn_output_unpad, indices_q, batch_size, query_length
|
1023 |
+
)
|
1024 |
else:
|
1025 |
attn_output = flash_attn_func(
|
1026 |
query_states,
|
|
|
1030 |
softmax_scale=softmax_scale,
|
1031 |
causal=causal,
|
1032 |
)
|
1033 |
+
|
1034 |
return attn_output
|
1035 |
|
1036 |
def _upad_input(
|
|
|
1041 |
attention_mask: torch.Tensor,
|
1042 |
query_length: int,
|
1043 |
):
|
1044 |
+
"""
|
1045 |
+
Unpads the Q, K, and V for FlashAttention in variable-length mode.
|
1046 |
+
"""
|
1047 |
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
1048 |
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
1049 |
|
1050 |
+
key_layer = index_first_axis(
|
1051 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
|
1052 |
+
indices_k,
|
1053 |
+
)
|
1054 |
+
value_layer = index_first_axis(
|
1055 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
|
1056 |
+
indices_k,
|
1057 |
+
)
|
1058 |
if query_length == kv_seq_len:
|
1059 |
+
query_layer = index_first_axis(
|
1060 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim),
|
1061 |
+
indices_k,
|
1062 |
+
)
|
1063 |
cu_seqlens_q = cu_seqlens_k
|
1064 |
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
1065 |
indices_q = indices_k
|
1066 |
elif query_length == 1:
|
1067 |
max_seqlen_in_batch_q = 1
|
1068 |
+
cu_seqlens_q = torch.arange(
|
1069 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
1070 |
+
)
|
1071 |
indices_q = cu_seqlens_q[:-1]
|
1072 |
query_layer = query_layer.squeeze(1)
|
1073 |
else:
|
1074 |
+
# handle partial left padding
|
1075 |
attention_mask = attention_mask[:, -query_length:]
|
1076 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
|
1077 |
+
query_layer, attention_mask
|
1078 |
+
)
|
1079 |
+
|
1080 |
+
return (
|
1081 |
+
query_layer,
|
1082 |
+
key_layer,
|
1083 |
+
value_layer,
|
1084 |
+
indices_q,
|
1085 |
+
(cu_seqlens_q, cu_seqlens_k),
|
1086 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
1087 |
+
)
|
1088 |
|
1089 |
|
1090 |
+
# Attach the attention classes in a dictionary for easy selection
|
1091 |
ATTENTION_CLASSES = {
|
1092 |
"eager": DeepseekV3Attention,
|
1093 |
"flash_attention_2": DeepseekV3FlashAttention2,
|
|
|
1105 |
def __init__(self, config: DeepseekV3Config, layer_idx: int):
|
1106 |
super().__init__()
|
1107 |
self.hidden_size = config.hidden_size
|
1108 |
+
|
1109 |
+
self.self_attn = ATTENTION_CLASSES[config._attn_implementation](
|
1110 |
+
config=config, layer_idx=layer_idx
|
1111 |
+
)
|
1112 |
+
|
1113 |
+
# Optionally use MoE
|
1114 |
+
if (
|
1115 |
+
config.n_routed_experts is not None
|
1116 |
+
and layer_idx >= config.first_k_dense_replace
|
1117 |
+
and layer_idx % config.moe_layer_freq == 0
|
1118 |
+
):
|
1119 |
self.mlp = DeepseekV3MoE(config)
|
1120 |
else:
|
1121 |
self.mlp = DeepseekV3MLP(config)
|
1122 |
+
|
1123 |
+
self.input_layernorm = DeepseekV3RMSNorm(
|
1124 |
+
config.hidden_size, eps=config.rms_norm_eps
|
1125 |
+
)
|
1126 |
+
self.post_attention_layernorm = DeepseekV3RMSNorm(
|
1127 |
+
config.hidden_size, eps=config.rms_norm_eps
|
1128 |
+
)
|
1129 |
|
1130 |
def forward(
|
1131 |
self,
|
|
|
1138 |
**kwargs
|
1139 |
):
|
1140 |
"""
|
1141 |
+
Forward pass for one Deepseek decoder layer.
|
1142 |
"""
|
1143 |
residual = hidden_states
|
1144 |
+
|
1145 |
+
# Pre-attention norm
|
1146 |
hidden_states = self.input_layernorm(hidden_states)
|
1147 |
+
|
1148 |
+
# Self-attention
|
1149 |
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
1150 |
hidden_states=hidden_states,
|
1151 |
attention_mask=attention_mask,
|
|
|
1157 |
)
|
1158 |
hidden_states = residual + hidden_states
|
1159 |
|
1160 |
+
# Post-attention norm
|
1161 |
residual = hidden_states
|
1162 |
hidden_states = self.post_attention_layernorm(hidden_states)
|
|
|
|
|
|
|
|
|
1163 |
|
1164 |
+
# MLP or MoE
|
1165 |
hidden_states = self.mlp(hidden_states)
|
1166 |
hidden_states = residual + hidden_states
|
1167 |
|
1168 |
outputs = (hidden_states,)
|
1169 |
if output_attentions:
|
1170 |
outputs += (self_attn_weights,)
|
1171 |
+
|
1172 |
if use_cache:
|
1173 |
outputs += (present_key_value,)
|
1174 |
+
|
1175 |
return outputs
|
1176 |
|
1177 |
|
|
|
1181 |
|
1182 |
DeepseekV3_START_DOCSTRING = r"""
|
1183 |
This model inherits from `PreTrainedModel`. Check the superclass documentation
|
1184 |
+
for the generic methods the library implements for all its model (such as loading or saving, etc.)
|
1185 |
"""
|
1186 |
|
1187 |
class DeepseekV3PreTrainedModel(PreTrainedModel):
|
|
|
1194 |
_supports_cache_class = True
|
1195 |
|
1196 |
def _init_weights(self, module):
|
1197 |
+
# IMPROVEMENT: Could add more robust initialization or variants (e.g., Xavier)
|
1198 |
std = self.config.initializer_range
|
1199 |
if isinstance(module, nn.Linear):
|
1200 |
module.weight.data.normal_(mean=0.0, std=std)
|
|
|
1217 |
input_ids (torch.LongTensor): shape `(batch_size, sequence_length)`
|
1218 |
attention_mask (torch.Tensor): shape `(batch_size, sequence_length)` or `(batch_size, 1, seq_len, seq_len)`, optional.
|
1219 |
position_ids (torch.LongTensor): shape `(batch_size, sequence_length)`, optional.
|
1220 |
+
past_key_values (Cache or tuple(tuple(torch.FloatTensor))), optional:
|
1221 |
+
Pre-computed hidden-states (key and values) that can be used to speed up sequential decoding.
|
1222 |
inputs_embeds (torch.FloatTensor): shape `(batch_size, sequence_length, hidden_size)`, optional.
|
1223 |
+
use_cache (bool), optional
|
1224 |
+
output_attentions (bool), optional
|
1225 |
+
output_hidden_states (bool), optional
|
1226 |
+
return_dict (bool), optional
|
1227 |
"""
|
1228 |
|
1229 |
+
@add_start_docstrings(
|
1230 |
+
"The bare DeepseekV3 Model outputting raw hidden-states without any specific head on top.",
|
1231 |
+
DeepseekV3_START_DOCSTRING,
|
1232 |
+
)
|
1233 |
class DeepseekV3Model(DeepseekV3PreTrainedModel):
|
1234 |
"""
|
1235 |
+
Transformer decoder consisting of config.num_hidden_layers layers. Each layer is a `DeepseekV3DecoderLayer`.
|
1236 |
"""
|
1237 |
def __init__(self, config: DeepseekV3Config):
|
1238 |
super().__init__(config)
|
1239 |
self.padding_idx = config.pad_token_id
|
1240 |
self.vocab_size = config.vocab_size
|
1241 |
+
|
1242 |
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
1243 |
+
|
1244 |
+
# Build decoder layers
|
1245 |
+
self.layers = nn.ModuleList([
|
1246 |
+
DeepseekV3DecoderLayer(config, layer_idx)
|
1247 |
+
for layer_idx in range(config.num_hidden_layers)
|
1248 |
+
])
|
1249 |
+
|
1250 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
1251 |
self.norm = DeepseekV3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1252 |
+
|
1253 |
self.gradient_checkpointing = False
|
1254 |
self.post_init()
|
|
|
|
|
1255 |
|
1256 |
def get_input_embeddings(self) -> nn.Embedding:
|
1257 |
return self.embed_tokens
|
|
|
1272 |
output_hidden_states: Optional[bool] = None,
|
1273 |
return_dict: Optional[bool] = None,
|
1274 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
1275 |
+
|
1276 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1277 |
+
output_hidden_states = (output_hidden_states if output_hidden_states is not None
|
1278 |
+
else self.config.output_hidden_states)
|
1279 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1280 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1281 |
|
|
|
1297 |
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
1298 |
|
1299 |
if position_ids is None:
|
1300 |
+
device = (input_ids.device if input_ids is not None else inputs_embeds.device)
|
1301 |
+
position_ids = torch.arange(
|
1302 |
+
past_key_values_length,
|
1303 |
+
seq_length + past_key_values_length,
|
1304 |
+
dtype=torch.long,
|
1305 |
+
device=device
|
1306 |
+
)
|
1307 |
position_ids = position_ids.unsqueeze(0)
|
1308 |
|
1309 |
if inputs_embeds is None:
|
1310 |
inputs_embeds = self.embed_tokens(input_ids)
|
1311 |
|
1312 |
+
# If flash attention is used, we pass 2D mask to the layers
|
1313 |
if self._use_flash_attention_2:
|
1314 |
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
1315 |
else:
|
1316 |
+
# standard 4D mask
|
1317 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
1318 |
+
attention_mask,
|
1319 |
+
(batch_size, seq_length),
|
1320 |
+
inputs_embeds,
|
1321 |
+
past_key_values_length,
|
1322 |
+
)
|
1323 |
|
1324 |
hidden_states = inputs_embeds
|
1325 |
|
|
|
1330 |
for idx, decoder_layer in enumerate(self.layers):
|
1331 |
if output_hidden_states:
|
1332 |
all_hidden_states += (hidden_states,)
|
1333 |
+
|
1334 |
+
# Potential gradient checkpointing
|
1335 |
if self.gradient_checkpointing and self.training:
|
1336 |
def create_custom_forward(module):
|
1337 |
def custom_forward(*inputs):
|
1338 |
return module(*inputs, output_attentions=output_attentions, use_cache=use_cache)
|
1339 |
return custom_forward
|
1340 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
1341 |
+
create_custom_forward(decoder_layer),
|
1342 |
+
hidden_states,
|
1343 |
+
attention_mask,
|
1344 |
+
position_ids,
|
1345 |
+
past_key_values
|
1346 |
+
)
|
1347 |
else:
|
1348 |
+
layer_outputs = decoder_layer(
|
1349 |
+
hidden_states,
|
1350 |
+
attention_mask=attention_mask,
|
1351 |
+
position_ids=position_ids,
|
1352 |
+
past_key_value=past_key_values,
|
1353 |
+
output_attentions=output_attentions,
|
1354 |
+
use_cache=use_cache,
|
1355 |
+
)
|
1356 |
+
|
1357 |
hidden_states = layer_outputs[0]
|
1358 |
if use_cache:
|
1359 |
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1360 |
+
|
1361 |
if output_attentions:
|
1362 |
all_self_attns += (layer_outputs[1],)
|
1363 |
+
|
1364 |
hidden_states = self.norm(hidden_states)
|
1365 |
if output_hidden_states:
|
1366 |
all_hidden_states += (hidden_states,)
|
1367 |
|
1368 |
+
# Prepare next_cache
|
1369 |
+
next_cache = None
|
1370 |
+
if use_cache:
|
1371 |
+
next_cache = (
|
1372 |
+
next_decoder_cache.to_legacy_cache()
|
1373 |
+
if use_legacy_cache
|
1374 |
+
else next_decoder_cache
|
1375 |
+
)
|
1376 |
|
1377 |
if not return_dict:
|
1378 |
+
return tuple(
|
1379 |
+
v
|
1380 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
1381 |
+
if v is not None
|
1382 |
+
)
|
1383 |
+
|
1384 |
return BaseModelOutputWithPast(
|
1385 |
last_hidden_state=hidden_states,
|
1386 |
past_key_values=next_cache,
|
|
|
1401 |
self.model = DeepseekV3Model(config)
|
1402 |
self.vocab_size = config.vocab_size
|
1403 |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1404 |
+
|
1405 |
self.post_init()
|
1406 |
|
1407 |
def get_input_embeddings(self) -> nn.Embedding:
|
|
|
1423 |
return self.model
|
1424 |
|
1425 |
@add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING)
|
1426 |
+
@replace_return_docstrings(
|
1427 |
+
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
1428 |
+
)
|
1429 |
def forward(
|
1430 |
self,
|
1431 |
input_ids: Optional[torch.LongTensor] = None,
|
|
|
1439 |
output_hidden_states: Optional[bool] = None,
|
1440 |
return_dict: Optional[bool] = None,
|
1441 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1442 |
+
"""
|
1443 |
+
Args:
|
1444 |
+
labels (torch.LongTensor of shape (batch_size, sequence_length), optional):
|
1445 |
+
For computing the language modeling loss. Indices in [0, config.vocab_size] or -100.
|
1446 |
+
"""
|
1447 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1448 |
+
output_hidden_states = (output_hidden_states if output_hidden_states is not None
|
1449 |
+
else self.config.output_hidden_states)
|
1450 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1451 |
|
1452 |
+
# Decoder forward
|
1453 |
+
outputs = self.model(
|
1454 |
+
input_ids=input_ids,
|
1455 |
+
attention_mask=attention_mask,
|
1456 |
+
position_ids=position_ids,
|
1457 |
+
past_key_values=past_key_values,
|
1458 |
+
inputs_embeds=inputs_embeds,
|
1459 |
+
use_cache=use_cache,
|
1460 |
+
output_attentions=output_attentions,
|
1461 |
+
output_hidden_states=output_hidden_states,
|
1462 |
+
return_dict=return_dict,
|
1463 |
+
)
|
1464 |
+
|
|
|
|
|
|
|
|
|
|
|
1465 |
hidden_states = outputs[0]
|
1466 |
+
logits = self.lm_head(hidden_states)
|
1467 |
+
logits = logits.float() # IMPROVEMENT: Could keep FP16 if stable
|
1468 |
+
|
1469 |
loss = None
|
1470 |
if labels is not None:
|
1471 |
+
# SHIFT
|
1472 |
shift_logits = logits[..., :-1, :].contiguous()
|
1473 |
shift_labels = labels[..., 1:].contiguous()
|
1474 |
+
|
1475 |
loss_fct = CrossEntropyLoss()
|
1476 |
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1477 |
+
shift_labels = shift_labels.view(-1)
|
1478 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1479 |
loss = loss_fct(shift_logits, shift_labels)
|
1480 |
|
1481 |
if not return_dict:
|
|
|
1498 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1499 |
**kwargs
|
1500 |
):
|
1501 |
+
"""
|
1502 |
+
Prepare inputs during generation loops.
|
1503 |
+
"""
|
1504 |
if past_key_values is not None:
|
1505 |
if isinstance(past_key_values, Cache):
|
1506 |
cache_length = past_key_values.get_seq_length()
|
|
|
1509 |
else:
|
1510 |
cache_length = past_length = past_key_values[0][0].shape[2]
|
1511 |
max_cache_length = None
|
1512 |
+
|
1513 |
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1514 |
+
# match up with the unprocessed tokens
|
1515 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1516 |
elif past_length < input_ids.shape[1]:
|
1517 |
input_ids = input_ids[:, past_length:]
|
1518 |
+
|
1519 |
if max_cache_length is not None and attention_mask is not None:
|
1520 |
if cache_length + input_ids.shape[1] > max_cache_length:
|
1521 |
attention_mask = attention_mask[:, -max_cache_length:]
|
1522 |
+
|
1523 |
position_ids = kwargs.get("position_ids", None)
|
1524 |
if attention_mask is not None and position_ids is None:
|
1525 |
position_ids = attention_mask.long().cumsum(-1) - 1
|
1526 |
position_ids.masked_fill_(attention_mask == 0, 1)
|
1527 |
if past_key_values:
|
1528 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1529 |
+
|
1530 |
+
# If we have inputs_embeds only for the first token
|
1531 |
if inputs_embeds is not None and past_key_values is None:
|
1532 |
model_inputs = {"inputs_embeds": inputs_embeds}
|
1533 |
else:
|
1534 |
model_inputs = {"input_ids": input_ids}
|
1535 |
+
|
1536 |
+
model_inputs.update(
|
1537 |
+
{
|
1538 |
+
"position_ids": position_ids,
|
1539 |
+
"past_key_values": past_key_values,
|
1540 |
+
"use_cache": kwargs.get("use_cache"),
|
1541 |
+
"attention_mask": attention_mask,
|
1542 |
+
}
|
1543 |
+
)
|
1544 |
return model_inputs
|
1545 |
|
1546 |
@staticmethod
|
1547 |
def _reorder_cache(past_key_values: Tuple, beam_idx: torch.Tensor) -> Tuple:
|
1548 |
reordered_past = ()
|
1549 |
for layer_past in past_key_values:
|
1550 |
+
reordered_past += (
|
1551 |
+
tuple(
|
1552 |
+
past_state.index_select(0, beam_idx.to(past_state.device))
|
1553 |
+
for past_state in layer_past
|
1554 |
+
),
|
1555 |
+
)
|
1556 |
return reordered_past
|
1557 |
|
1558 |
|
|
|
1573 |
self.num_labels = config.num_labels
|
1574 |
self.model = DeepseekV3Model(config)
|
1575 |
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1576 |
+
|
1577 |
self.post_init()
|
1578 |
|
1579 |
def get_input_embeddings(self) -> nn.Embedding:
|
|
|
1596 |
output_hidden_states: Optional[bool] = None,
|
1597 |
return_dict: Optional[bool] = None,
|
1598 |
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1599 |
+
|
1600 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1601 |
transformer_outputs = self.model(
|
1602 |
input_ids,
|
|
|
1617 |
else:
|
1618 |
batch_size = inputs_embeds.shape[0]
|
1619 |
|
1620 |
+
# If no pad_token_id, assume last token for each sample
|
1621 |
if self.config.pad_token_id is None and batch_size != 1:
|
1622 |
+
raise ValueError(
|
1623 |
+
"Cannot handle batch sizes > 1 if no pad token is defined."
|
1624 |
+
)
|
1625 |
if self.config.pad_token_id is None:
|
1626 |
sequence_lengths = -1
|
1627 |
else:
|
1628 |
if input_ids is not None:
|
1629 |
+
sequence_lengths = (
|
1630 |
+
torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1631 |
+
).to(logits.device)
|
1632 |
else:
|
1633 |
sequence_lengths = -1
|
1634 |
|
1635 |
+
pooled_logits = logits[
|
1636 |
+
torch.arange(batch_size, device=logits.device), sequence_lengths
|
1637 |
+
]
|
1638 |
|
1639 |
loss = None
|
1640 |
if labels is not None:
|
|
|
1646 |
self.config.problem_type = "single_label_classification"
|
1647 |
else:
|
1648 |
self.config.problem_type = "multi_label_classification"
|
1649 |
+
|
1650 |
if self.config.problem_type == "regression":
|
1651 |
loss_fct = MSELoss()
|
1652 |
+
if self.num_labels == 1:
|
1653 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1654 |
+
else:
|
1655 |
+
loss = loss_fct(pooled_logits, labels)
|
1656 |
elif self.config.problem_type == "single_label_classification":
|
1657 |
loss_fct = CrossEntropyLoss()
|
1658 |
+
loss = loss_fct(
|
1659 |
+
pooled_logits.view(-1, self.num_labels), labels.view(-1)
|
1660 |
+
)
|
1661 |
elif self.config.problem_type == "multi_label_classification":
|
1662 |
loss_fct = BCEWithLogitsLoss()
|
1663 |
loss = loss_fct(pooled_logits, labels)
|