Create configuration_deepseek.py
Browse files- myr1/configuration_deepseek.py +205 -0
myr1/configuration_deepseek.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# configuration_deepseek.py
|
2 |
+
|
3 |
+
from transformers.configuration_utils import PretrainedConfig
|
4 |
+
from transformers.utils import logging
|
5 |
+
|
6 |
+
logger = logging.get_logger(__name__)
|
7 |
+
|
8 |
+
# This can remain empty if no pre-trained configs are being listed.
|
9 |
+
DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
10 |
+
|
11 |
+
|
12 |
+
class DeepseekV3Config(PretrainedConfig):
|
13 |
+
r"""
|
14 |
+
Configuration class for the DeepSeek-V3 model architecture. Inherits from `PretrainedConfig`.
|
15 |
+
|
16 |
+
Args:
|
17 |
+
vocab_size (`int`, *optional*, defaults to 129280):
|
18 |
+
Vocabulary size of the DeepSeek model.
|
19 |
+
hidden_size (`int`, *optional*, defaults to 7168):
|
20 |
+
Dimension of the hidden representations.
|
21 |
+
intermediate_size (`int`, *optional*, defaults to 18432):
|
22 |
+
Dimension of the MLP representations in dense layers.
|
23 |
+
moe_intermediate_size (`int`, *optional*, defaults to 2048):
|
24 |
+
Dimension of the MLP representations used by MoE experts.
|
25 |
+
num_hidden_layers (`int`, *optional*, defaults to 61):
|
26 |
+
Number of hidden layers in the Transformer decoder.
|
27 |
+
num_nextn_predict_layers (`int`, *optional*, defaults to 1):
|
28 |
+
Number of "next-n predict" layers in the DeepSeekV3 model.
|
29 |
+
num_attention_heads (`int`, *optional*, defaults to 128):
|
30 |
+
Number of attention heads per attention layer.
|
31 |
+
num_key_value_heads (`int`, *optional*):
|
32 |
+
The number of key-value heads, used for GQA or MQA. Defaults to `num_attention_heads` if `None`.
|
33 |
+
n_shared_experts (`int`, *optional*, defaults to 1):
|
34 |
+
Number of shared experts. If None, indicates no shared experts (dense model).
|
35 |
+
n_routed_experts (`int`, *optional*, defaults to 256):
|
36 |
+
Number of routed experts. If None, indicates no routed experts (dense model).
|
37 |
+
ep_size (`int`, *optional*, defaults to 1):
|
38 |
+
The world-size used for expert parallelism. Typically set to the distributed world size if MoE is distributed.
|
39 |
+
routed_scaling_factor (`float`, *optional*, defaults to 2.5):
|
40 |
+
Scaling factor for routed experts' output weights.
|
41 |
+
kv_lora_rank (`int`, *optional*, defaults to 512):
|
42 |
+
The LoRA rank for Key and Value projections.
|
43 |
+
q_lora_rank (`int`, *optional*, defaults to 1536):
|
44 |
+
The LoRA rank for Query projections.
|
45 |
+
qk_rope_head_dim (`int`, *optional*, defaults to 64):
|
46 |
+
The dimension of the "rotary-embedded" portion of the Q/K heads.
|
47 |
+
v_head_dim (`int`, *optional*, defaults to 128):
|
48 |
+
The dimension of the Value heads.
|
49 |
+
qk_nope_head_dim (`int`, *optional*, defaults to 128):
|
50 |
+
The dimension of the Q/K heads that do *not* use rotary embeddings.
|
51 |
+
topk_method (`str`, *optional*, defaults to "noaux_tc"):
|
52 |
+
The gating TopK method in MoE (e.g. "noaux_tc", "topk_gating").
|
53 |
+
n_group (`int`, *optional*, defaults to 8):
|
54 |
+
Number of groups used in gating for MoE experts.
|
55 |
+
topk_group (`int`, *optional*, defaults to 4):
|
56 |
+
Number of selected groups for each token (MoE gating).
|
57 |
+
num_experts_per_tok (`int`, *optional*, defaults to 8):
|
58 |
+
Number of selected experts per token in the MoE gating.
|
59 |
+
moe_layer_freq (`int`, *optional*, defaults to 1):
|
60 |
+
Frequency of MoE layers among the transformer layers (1 = every layer is MoE).
|
61 |
+
first_k_dense_replace (`int`, *optional*, defaults to 3):
|
62 |
+
How many initial layers remain dense before MoE layers start appearing.
|
63 |
+
norm_topk_prob (`bool`, *optional*, defaults to True):
|
64 |
+
Whether to normalize the top-k gating probabilities.
|
65 |
+
scoring_func (`str`, *optional*, defaults to "sigmoid"):
|
66 |
+
The scoring function used for gating. For instance, "sigmoid" or "softmax".
|
67 |
+
aux_loss_alpha (`float`, *optional*, defaults to 0.001):
|
68 |
+
Scaling factor for any auxiliary MoE loss (e.g. load balancing).
|
69 |
+
seq_aux (`bool`, *optional*, defaults to True):
|
70 |
+
If True, auxiliary loss is computed per sample.
|
71 |
+
hidden_act (`str`, *optional*, defaults to "silu"):
|
72 |
+
Activation function used in MLP layers.
|
73 |
+
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
74 |
+
Maximum sequence length the model can handle.
|
75 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
76 |
+
Standard deviation of the truncated normal initializer.
|
77 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-6):
|
78 |
+
Epsilon for RMS norm layers.
|
79 |
+
use_cache (`bool`, *optional*, defaults to True):
|
80 |
+
Whether the model returns `past_key_values`.
|
81 |
+
pad_token_id (`int`, *optional*):
|
82 |
+
Padding token id. If `None`, the model does not use a special padding token.
|
83 |
+
bos_token_id (`int`, *optional*, defaults to 0):
|
84 |
+
Beginning-of-sequence token id.
|
85 |
+
eos_token_id (`int`, *optional*, defaults to 1):
|
86 |
+
End-of-sequence token id.
|
87 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
88 |
+
Tensor parallelism rank used during pretraining for reproducibility.
|
89 |
+
tie_word_embeddings (`bool`, *optional*, defaults to False):
|
90 |
+
Whether to tie input and output embeddings.
|
91 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
92 |
+
Base period for RoPE embeddings.
|
93 |
+
rope_scaling (`dict`, *optional*, defaults to None):
|
94 |
+
Dictionary for RoPE scaling parameters. (e.g. {"type":"yarn","factor":40,...})
|
95 |
+
attention_bias (`bool`, *optional*, defaults to False):
|
96 |
+
Whether to include bias terms in Q/K/V/out projections.
|
97 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
98 |
+
Dropout probability for attention probabilities.
|
99 |
+
_attn_implementation (`str`, *optional*, defaults to "flash_attention_2"): # New: Attention Implementation Type
|
100 |
+
String indicating the attention implementation. Can be "eager", "flash_attention_2", or "sparse_attention" (if implemented).
|
101 |
+
**kwargs:
|
102 |
+
Additional arguments passed to `PretrainedConfig`.
|
103 |
+
"""
|
104 |
+
|
105 |
+
model_type = "deepseek_v3"
|
106 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
107 |
+
|
108 |
+
def __init__(
|
109 |
+
self,
|
110 |
+
vocab_size=129280,
|
111 |
+
hidden_size=7168,
|
112 |
+
intermediate_size=18432,
|
113 |
+
moe_intermediate_size=2048,
|
114 |
+
num_hidden_layers=61,
|
115 |
+
num_nextn_predict_layers=1,
|
116 |
+
num_attention_heads=128,
|
117 |
+
num_key_value_heads=None, # Will be set to num_attention_heads if None
|
118 |
+
n_shared_experts=1,
|
119 |
+
n_routed_experts=256,
|
120 |
+
ep_size=1,
|
121 |
+
routed_scaling_factor=2.5,
|
122 |
+
kv_lora_rank=512,
|
123 |
+
q_lora_rank=1536,
|
124 |
+
qk_rope_head_dim=64,
|
125 |
+
v_head_dim=128,
|
126 |
+
qk_nope_head_dim=128,
|
127 |
+
topk_method="noaux_tc",
|
128 |
+
n_group=8,
|
129 |
+
topk_group=4,
|
130 |
+
num_experts_per_tok=8,
|
131 |
+
moe_layer_freq=1,
|
132 |
+
first_k_dense_replace=3,
|
133 |
+
norm_topk_prob=True,
|
134 |
+
scoring_func="sigmoid",
|
135 |
+
aux_loss_alpha=0.001,
|
136 |
+
seq_aux=True,
|
137 |
+
hidden_act="silu",
|
138 |
+
max_position_embeddings=4096,
|
139 |
+
initializer_range=0.02,
|
140 |
+
rms_norm_eps=1e-6,
|
141 |
+
use_cache=True,
|
142 |
+
pad_token_id=None,
|
143 |
+
bos_token_id=0,
|
144 |
+
eos_token_id=1,
|
145 |
+
pretraining_tp=1,
|
146 |
+
tie_word_embeddings=False,
|
147 |
+
rope_theta=10000.0,
|
148 |
+
rope_scaling=None,
|
149 |
+
attention_bias=False,
|
150 |
+
attention_dropout=0.0,
|
151 |
+
_attn_implementation="flash_attention_2", # New: Default to flash_attention_2
|
152 |
+
**kwargs,
|
153 |
+
):
|
154 |
+
# Set defaults
|
155 |
+
self.vocab_size = vocab_size
|
156 |
+
self.hidden_size = hidden_size
|
157 |
+
self.intermediate_size = intermediate_size
|
158 |
+
self.moe_intermediate_size = moe_intermediate_size
|
159 |
+
self.num_hidden_layers = num_hidden_layers
|
160 |
+
self.num_nextn_predict_layers = num_nextn_predict_layers
|
161 |
+
self.num_attention_heads = num_attention_heads
|
162 |
+
# default num_key_value_heads = num_attention_heads if not specified
|
163 |
+
if num_key_value_heads is None:
|
164 |
+
num_key_value_heads = num_attention_heads
|
165 |
+
self.num_key_value_heads = num_key_value_heads
|
166 |
+
|
167 |
+
self.n_shared_experts = n_shared_experts
|
168 |
+
self.n_routed_experts = n_routed_experts
|
169 |
+
self.ep_size = ep_size
|
170 |
+
self.routed_scaling_factor = routed_scaling_factor
|
171 |
+
self.kv_lora_rank = kv_lora_rank
|
172 |
+
self.q_lora_rank = q_lora_rank
|
173 |
+
self.qk_rope_head_dim = qk_rope_head_dim
|
174 |
+
self.v_head_dim = v_head_dim
|
175 |
+
self.qk_nope_head_dim = qk_nope_head_dim
|
176 |
+
self.topk_method = topk_method
|
177 |
+
self.n_group = n_group
|
178 |
+
self.topk_group = topk_group
|
179 |
+
self.num_experts_per_tok = num_experts_per_tok
|
180 |
+
self.moe_layer_freq = moe_layer_freq
|
181 |
+
self.first_k_dense_replace = first_k_dense_replace
|
182 |
+
self.norm_topk_prob = norm_topk_prob
|
183 |
+
self.scoring_func = scoring_func
|
184 |
+
self.aux_loss_alpha = aux_loss_alpha
|
185 |
+
self.seq_aux = seq_aux
|
186 |
+
self.hidden_act = hidden_act
|
187 |
+
self.max_position_embeddings = max_position_embeddings
|
188 |
+
self.initializer_range = initializer_range
|
189 |
+
self.rms_norm_eps = rms_norm_eps
|
190 |
+
self.use_cache = use_cache
|
191 |
+
self.rope_theta = rope_theta
|
192 |
+
self.rope_scaling = rope_scaling
|
193 |
+
self.attention_bias = attention_bias
|
194 |
+
self.attention_dropout = attention_dropout
|
195 |
+
self._attn_implementation = _attn_implementation # New: set attention implementation type
|
196 |
+
self.pretraining_tp = pretraining_tp
|
197 |
+
|
198 |
+
# Pass everything to PretrainedConfig
|
199 |
+
super().__init__(
|
200 |
+
pad_token_id=pad_token_id,
|
201 |
+
bos_token_id=bos_token_id,
|
202 |
+
eos_token_id=eos_token_id,
|
203 |
+
tie_word_embeddings=tie_word_embeddings,
|
204 |
+
**kwargs,
|
205 |
+
)
|