wuhp commited on
Commit
62e2761
·
verified ·
1 Parent(s): 3bf6aa2

Create configuration_deepseek.py

Browse files
Files changed (1) hide show
  1. myr1/configuration_deepseek.py +205 -0
myr1/configuration_deepseek.py ADDED
@@ -0,0 +1,205 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # configuration_deepseek.py
2
+
3
+ from transformers.configuration_utils import PretrainedConfig
4
+ from transformers.utils import logging
5
+
6
+ logger = logging.get_logger(__name__)
7
+
8
+ # This can remain empty if no pre-trained configs are being listed.
9
+ DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
10
+
11
+
12
+ class DeepseekV3Config(PretrainedConfig):
13
+ r"""
14
+ Configuration class for the DeepSeek-V3 model architecture. Inherits from `PretrainedConfig`.
15
+
16
+ Args:
17
+ vocab_size (`int`, *optional*, defaults to 129280):
18
+ Vocabulary size of the DeepSeek model.
19
+ hidden_size (`int`, *optional*, defaults to 7168):
20
+ Dimension of the hidden representations.
21
+ intermediate_size (`int`, *optional*, defaults to 18432):
22
+ Dimension of the MLP representations in dense layers.
23
+ moe_intermediate_size (`int`, *optional*, defaults to 2048):
24
+ Dimension of the MLP representations used by MoE experts.
25
+ num_hidden_layers (`int`, *optional*, defaults to 61):
26
+ Number of hidden layers in the Transformer decoder.
27
+ num_nextn_predict_layers (`int`, *optional*, defaults to 1):
28
+ Number of "next-n predict" layers in the DeepSeekV3 model.
29
+ num_attention_heads (`int`, *optional*, defaults to 128):
30
+ Number of attention heads per attention layer.
31
+ num_key_value_heads (`int`, *optional*):
32
+ The number of key-value heads, used for GQA or MQA. Defaults to `num_attention_heads` if `None`.
33
+ n_shared_experts (`int`, *optional*, defaults to 1):
34
+ Number of shared experts. If None, indicates no shared experts (dense model).
35
+ n_routed_experts (`int`, *optional*, defaults to 256):
36
+ Number of routed experts. If None, indicates no routed experts (dense model).
37
+ ep_size (`int`, *optional*, defaults to 1):
38
+ The world-size used for expert parallelism. Typically set to the distributed world size if MoE is distributed.
39
+ routed_scaling_factor (`float`, *optional*, defaults to 2.5):
40
+ Scaling factor for routed experts' output weights.
41
+ kv_lora_rank (`int`, *optional*, defaults to 512):
42
+ The LoRA rank for Key and Value projections.
43
+ q_lora_rank (`int`, *optional*, defaults to 1536):
44
+ The LoRA rank for Query projections.
45
+ qk_rope_head_dim (`int`, *optional*, defaults to 64):
46
+ The dimension of the "rotary-embedded" portion of the Q/K heads.
47
+ v_head_dim (`int`, *optional*, defaults to 128):
48
+ The dimension of the Value heads.
49
+ qk_nope_head_dim (`int`, *optional*, defaults to 128):
50
+ The dimension of the Q/K heads that do *not* use rotary embeddings.
51
+ topk_method (`str`, *optional*, defaults to "noaux_tc"):
52
+ The gating TopK method in MoE (e.g. "noaux_tc", "topk_gating").
53
+ n_group (`int`, *optional*, defaults to 8):
54
+ Number of groups used in gating for MoE experts.
55
+ topk_group (`int`, *optional*, defaults to 4):
56
+ Number of selected groups for each token (MoE gating).
57
+ num_experts_per_tok (`int`, *optional*, defaults to 8):
58
+ Number of selected experts per token in the MoE gating.
59
+ moe_layer_freq (`int`, *optional*, defaults to 1):
60
+ Frequency of MoE layers among the transformer layers (1 = every layer is MoE).
61
+ first_k_dense_replace (`int`, *optional*, defaults to 3):
62
+ How many initial layers remain dense before MoE layers start appearing.
63
+ norm_topk_prob (`bool`, *optional*, defaults to True):
64
+ Whether to normalize the top-k gating probabilities.
65
+ scoring_func (`str`, *optional*, defaults to "sigmoid"):
66
+ The scoring function used for gating. For instance, "sigmoid" or "softmax".
67
+ aux_loss_alpha (`float`, *optional*, defaults to 0.001):
68
+ Scaling factor for any auxiliary MoE loss (e.g. load balancing).
69
+ seq_aux (`bool`, *optional*, defaults to True):
70
+ If True, auxiliary loss is computed per sample.
71
+ hidden_act (`str`, *optional*, defaults to "silu"):
72
+ Activation function used in MLP layers.
73
+ max_position_embeddings (`int`, *optional*, defaults to 4096):
74
+ Maximum sequence length the model can handle.
75
+ initializer_range (`float`, *optional*, defaults to 0.02):
76
+ Standard deviation of the truncated normal initializer.
77
+ rms_norm_eps (`float`, *optional*, defaults to 1e-6):
78
+ Epsilon for RMS norm layers.
79
+ use_cache (`bool`, *optional*, defaults to True):
80
+ Whether the model returns `past_key_values`.
81
+ pad_token_id (`int`, *optional*):
82
+ Padding token id. If `None`, the model does not use a special padding token.
83
+ bos_token_id (`int`, *optional*, defaults to 0):
84
+ Beginning-of-sequence token id.
85
+ eos_token_id (`int`, *optional*, defaults to 1):
86
+ End-of-sequence token id.
87
+ pretraining_tp (`int`, *optional*, defaults to 1):
88
+ Tensor parallelism rank used during pretraining for reproducibility.
89
+ tie_word_embeddings (`bool`, *optional*, defaults to False):
90
+ Whether to tie input and output embeddings.
91
+ rope_theta (`float`, *optional*, defaults to 10000.0):
92
+ Base period for RoPE embeddings.
93
+ rope_scaling (`dict`, *optional*, defaults to None):
94
+ Dictionary for RoPE scaling parameters. (e.g. {"type":"yarn","factor":40,...})
95
+ attention_bias (`bool`, *optional*, defaults to False):
96
+ Whether to include bias terms in Q/K/V/out projections.
97
+ attention_dropout (`float`, *optional*, defaults to 0.0):
98
+ Dropout probability for attention probabilities.
99
+ _attn_implementation (`str`, *optional*, defaults to "flash_attention_2"): # New: Attention Implementation Type
100
+ String indicating the attention implementation. Can be "eager", "flash_attention_2", or "sparse_attention" (if implemented).
101
+ **kwargs:
102
+ Additional arguments passed to `PretrainedConfig`.
103
+ """
104
+
105
+ model_type = "deepseek_v3"
106
+ keys_to_ignore_at_inference = ["past_key_values"]
107
+
108
+ def __init__(
109
+ self,
110
+ vocab_size=129280,
111
+ hidden_size=7168,
112
+ intermediate_size=18432,
113
+ moe_intermediate_size=2048,
114
+ num_hidden_layers=61,
115
+ num_nextn_predict_layers=1,
116
+ num_attention_heads=128,
117
+ num_key_value_heads=None, # Will be set to num_attention_heads if None
118
+ n_shared_experts=1,
119
+ n_routed_experts=256,
120
+ ep_size=1,
121
+ routed_scaling_factor=2.5,
122
+ kv_lora_rank=512,
123
+ q_lora_rank=1536,
124
+ qk_rope_head_dim=64,
125
+ v_head_dim=128,
126
+ qk_nope_head_dim=128,
127
+ topk_method="noaux_tc",
128
+ n_group=8,
129
+ topk_group=4,
130
+ num_experts_per_tok=8,
131
+ moe_layer_freq=1,
132
+ first_k_dense_replace=3,
133
+ norm_topk_prob=True,
134
+ scoring_func="sigmoid",
135
+ aux_loss_alpha=0.001,
136
+ seq_aux=True,
137
+ hidden_act="silu",
138
+ max_position_embeddings=4096,
139
+ initializer_range=0.02,
140
+ rms_norm_eps=1e-6,
141
+ use_cache=True,
142
+ pad_token_id=None,
143
+ bos_token_id=0,
144
+ eos_token_id=1,
145
+ pretraining_tp=1,
146
+ tie_word_embeddings=False,
147
+ rope_theta=10000.0,
148
+ rope_scaling=None,
149
+ attention_bias=False,
150
+ attention_dropout=0.0,
151
+ _attn_implementation="flash_attention_2", # New: Default to flash_attention_2
152
+ **kwargs,
153
+ ):
154
+ # Set defaults
155
+ self.vocab_size = vocab_size
156
+ self.hidden_size = hidden_size
157
+ self.intermediate_size = intermediate_size
158
+ self.moe_intermediate_size = moe_intermediate_size
159
+ self.num_hidden_layers = num_hidden_layers
160
+ self.num_nextn_predict_layers = num_nextn_predict_layers
161
+ self.num_attention_heads = num_attention_heads
162
+ # default num_key_value_heads = num_attention_heads if not specified
163
+ if num_key_value_heads is None:
164
+ num_key_value_heads = num_attention_heads
165
+ self.num_key_value_heads = num_key_value_heads
166
+
167
+ self.n_shared_experts = n_shared_experts
168
+ self.n_routed_experts = n_routed_experts
169
+ self.ep_size = ep_size
170
+ self.routed_scaling_factor = routed_scaling_factor
171
+ self.kv_lora_rank = kv_lora_rank
172
+ self.q_lora_rank = q_lora_rank
173
+ self.qk_rope_head_dim = qk_rope_head_dim
174
+ self.v_head_dim = v_head_dim
175
+ self.qk_nope_head_dim = qk_nope_head_dim
176
+ self.topk_method = topk_method
177
+ self.n_group = n_group
178
+ self.topk_group = topk_group
179
+ self.num_experts_per_tok = num_experts_per_tok
180
+ self.moe_layer_freq = moe_layer_freq
181
+ self.first_k_dense_replace = first_k_dense_replace
182
+ self.norm_topk_prob = norm_topk_prob
183
+ self.scoring_func = scoring_func
184
+ self.aux_loss_alpha = aux_loss_alpha
185
+ self.seq_aux = seq_aux
186
+ self.hidden_act = hidden_act
187
+ self.max_position_embeddings = max_position_embeddings
188
+ self.initializer_range = initializer_range
189
+ self.rms_norm_eps = rms_norm_eps
190
+ self.use_cache = use_cache
191
+ self.rope_theta = rope_theta
192
+ self.rope_scaling = rope_scaling
193
+ self.attention_bias = attention_bias
194
+ self.attention_dropout = attention_dropout
195
+ self._attn_implementation = _attn_implementation # New: set attention implementation type
196
+ self.pretraining_tp = pretraining_tp
197
+
198
+ # Pass everything to PretrainedConfig
199
+ super().__init__(
200
+ pad_token_id=pad_token_id,
201
+ bos_token_id=bos_token_id,
202
+ eos_token_id=eos_token_id,
203
+ tie_word_embeddings=tie_word_embeddings,
204
+ **kwargs,
205
+ )