File size: 1,076 Bytes
aa77342
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# rolo_yolo_fast2

## Model Overview

**Architecture:** YOLOv11  
**Training Epochs:** 50  
**Batch Size:** 16  
**Optimizer:** auto  
**Learning Rate:** 0.001  
**Data Augmentation Level:** Basic

## Training Metrics

- **[email protected]:** 0.995

## Class IDs

| Class ID | Class Name |
|----------|------------|
| 0 | Panadol |
| 1 | Revanin |


## Datasets Used

- Drug Classification

## Class Image Counts

| Class Name | Image Count |
|------------|-------------|
| Panadol | 116 |
| Revanin | 122 |


## Description

This model was trained using the YOLOv11 architecture on a custom dataset. The training process involved 50 epochs with a batch size of 16. The optimizer used was **auto** with an initial learning rate of 0.001. Data augmentation was set to the **Basic** level to enhance model robustness.

## Usage

To use this model for inference, follow the instructions below:

```python
from ultralytics import YOLO

# Load the trained model
model = YOLO('best.pt')

# Perform inference on an image
results = model('path_to_image.jpg')

# Display results
results.show()