File size: 1,183 Bytes
910b443
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# car-75e-11n

## Model Overview

**Architecture:** YOLOv11  
**Training Epochs:** 75  
**Batch Size:** 32  
**Optimizer:** auto  
**Learning Rate:** 0.0005  
**Data Augmentation Level:** Moderate

## Training Metrics

- **[email protected]:** 0.88072

## Class IDs

| Class ID | Class Name |
|----------|------------|
| 0 | Vehicle |


## Datasets Used

- aerial-cars-rqcqh_v2
- bikedetection-7bpwy_v2
- car-detection-pyxz2_v4
- cars-bytt8_v35
- transport-rhkah_v8
- vehiclecount_v4
- vehicles-q0x2v-8kns4_v1

## Class Image Counts

| Class Name | Image Count |
|------------|-------------|
| Vehicle | 15163 |


## Description

This model was trained using the YOLOv11 architecture on a custom dataset. The training process involved 75 epochs with a batch size of 32. The optimizer used was **auto** with an initial learning rate of 0.0005. Data augmentation was set to the **Moderate** level to enhance model robustness.

## Usage

To use this model for inference, follow the instructions below:

```python
from ultralytics import YOLO

# Load the trained model
model = YOLO('best.pt')

# Perform inference on an image
results = model('path_to_image.jpg')

# Display results
results.show()