wwydmanski commited on
Commit
49570a9
·
verified ·
1 Parent(s): 7a78c18

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,470 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: allenai/specter2_base
3
+ library_name: sentence-transformers
4
+ pipeline_tag: sentence-similarity
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:9988
11
+ - loss:MultipleNegativesRankingLoss
12
+ widget:
13
+ - source_sentence: Splenomegaly in Malta fever
14
+ sentences:
15
+ - 'TROPICAL SPLENOMEGALY. '
16
+ - '[Voluminous migrating spleen in the course of Malta fever: effects of splenectomy]. '
17
+ - '[Adenoma of appendix]. '
18
+ - source_sentence: sRNA regulation
19
+ sentences:
20
+ - 'SR proteins control a complex network of RNA-processing events. '
21
+ - 'Convergence of submodality-specific input onto neurons in primary somatosensory
22
+ cortex. '
23
+ - 'Dynamic features of gene expression control by small regulatory RNAs. '
24
+ - source_sentence: Foley catheter hysterosalpingography
25
+ sentences:
26
+ - 'Hysterosalpingography using a Foley catheter. '
27
+ - '[Long-term follow-up of adult patients with isolated congenital AV block]. '
28
+ - 'Hysterosalpingography. '
29
+ - source_sentence: Anti-endoglin monoclonal antibodies
30
+ sentences:
31
+ - 'Cortisol response to general anaesthesia for medical imaging in children. '
32
+ - 'Anti-endoglin monoclonal antibodies are effective for suppressing metastasis
33
+ and the primary tumors by targeting tumor vasculature. '
34
+ - 'Endoglin: Beyond the Endothelium. '
35
+ - source_sentence: Alternariol Methyl Ether Quantitation
36
+ sentences:
37
+ - 'Stable isotope dilution assays of alternariol and alternariol monomethyl ether
38
+ in beverages. '
39
+ - 'The roles of eotaxin and the STAT6 signalling pathway in eosinophil recruitment
40
+ and host resistance to the nematodes Nippostrongylus brasiliensis and Heligmosomoides
41
+ bakeri. '
42
+ - 'Mechanisms of Action and Toxicity of the Mycotoxin Alternariol: A Review. '
43
+ ---
44
+
45
+ # SentenceTransformer based on allenai/specter2_base
46
+
47
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [allenai/specter2_base](https://huggingface.co/allenai/specter2_base) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
48
+
49
+ ## Model Details
50
+
51
+ ### Model Description
52
+ - **Model Type:** Sentence Transformer
53
+ - **Base model:** [allenai/specter2_base](https://huggingface.co/allenai/specter2_base) <!-- at revision 3447645e1def9117997203454fa4495937bfbd83 -->
54
+ - **Maximum Sequence Length:** 512 tokens
55
+ - **Output Dimensionality:** 768 tokens
56
+ - **Similarity Function:** Cosine Similarity
57
+ - **Training Dataset:**
58
+ - json
59
+ <!-- - **Language:** Unknown -->
60
+ <!-- - **License:** Unknown -->
61
+
62
+ ### Model Sources
63
+
64
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
65
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
66
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
67
+
68
+ ### Full Model Architecture
69
+
70
+ ```
71
+ SentenceTransformer(
72
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
73
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
74
+ )
75
+ ```
76
+
77
+ ## Usage
78
+
79
+ ### Direct Usage (Sentence Transformers)
80
+
81
+ First install the Sentence Transformers library:
82
+
83
+ ```bash
84
+ pip install -U sentence-transformers
85
+ ```
86
+
87
+ Then you can load this model and run inference.
88
+ ```python
89
+ from sentence_transformers import SentenceTransformer
90
+
91
+ # Download from the 🤗 Hub
92
+ model = SentenceTransformer("sentence_transformers_model_id")
93
+ # Run inference
94
+ sentences = [
95
+ 'Alternariol Methyl Ether Quantitation',
96
+ 'Stable isotope dilution assays of alternariol and alternariol monomethyl ether in beverages. ',
97
+ 'Mechanisms of Action and Toxicity of the Mycotoxin Alternariol: A Review. ',
98
+ ]
99
+ embeddings = model.encode(sentences)
100
+ print(embeddings.shape)
101
+ # [3, 768]
102
+
103
+ # Get the similarity scores for the embeddings
104
+ similarities = model.similarity(embeddings, embeddings)
105
+ print(similarities.shape)
106
+ # [3, 3]
107
+ ```
108
+
109
+ <!--
110
+ ### Direct Usage (Transformers)
111
+
112
+ <details><summary>Click to see the direct usage in Transformers</summary>
113
+
114
+ </details>
115
+ -->
116
+
117
+ <!--
118
+ ### Downstream Usage (Sentence Transformers)
119
+
120
+ You can finetune this model on your own dataset.
121
+
122
+ <details><summary>Click to expand</summary>
123
+
124
+ </details>
125
+ -->
126
+
127
+ <!--
128
+ ### Out-of-Scope Use
129
+
130
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
131
+ -->
132
+
133
+ <!--
134
+ ## Bias, Risks and Limitations
135
+
136
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
137
+ -->
138
+
139
+ <!--
140
+ ### Recommendations
141
+
142
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
143
+ -->
144
+
145
+ ## Training Details
146
+
147
+ ### Training Dataset
148
+
149
+ #### json
150
+
151
+ * Dataset: json
152
+ * Size: 9,988 training samples
153
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
154
+ * Approximate statistics based on the first 1000 samples:
155
+ | | anchor | positive | negative |
156
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
157
+ | type | string | string | string |
158
+ | details | <ul><li>min: 4 tokens</li><li>mean: 7.66 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 19.05 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.84 tokens</li><li>max: 48 tokens</li></ul> |
159
+ * Samples:
160
+ | anchor | positive | negative |
161
+ |:-----------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------|
162
+ | <code>mechanotransduction pathways</code> | <code>Signalling cascades in mechanotransduction: cell-matrix interactions and mechanical loading. </code> | <code>Mechanotransduction: May the force be with you. </code> |
163
+ | <code>FSR-tunable comb filter</code> | <code>Multiwavelength Raman fiber laser with a continuously-tunable spacing. </code> | <code>Tunable multiwavelength fiber laser using a comb filter based on erbium-ytterbium co-doped polarization maintaining fiber loop mirror. </code> |
164
+ | <code>Radiation pneumonitis enhancement</code> | <code>Induction and concurrent taxanes enhance both the pulmonary metabolic radiation response and the radiation pneumonitis response in patients with esophagus cancer. </code> | <code>Imaging of Hypersensitivity Pneumonitis. </code> |
165
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
166
+ ```json
167
+ {
168
+ "scale": 20.0,
169
+ "similarity_fct": "cos_sim"
170
+ }
171
+ ```
172
+
173
+ ### Training Hyperparameters
174
+ #### Non-Default Hyperparameters
175
+
176
+ - `per_device_train_batch_size`: 32
177
+ - `per_device_eval_batch_size`: 32
178
+ - `learning_rate`: 2e-05
179
+ - `num_train_epochs`: 1
180
+ - `lr_scheduler_type`: cosine_with_restarts
181
+ - `warmup_ratio`: 0.1
182
+ - `bf16`: True
183
+ - `batch_sampler`: no_duplicates
184
+
185
+ #### All Hyperparameters
186
+ <details><summary>Click to expand</summary>
187
+
188
+ - `overwrite_output_dir`: False
189
+ - `do_predict`: False
190
+ - `eval_strategy`: no
191
+ - `prediction_loss_only`: True
192
+ - `per_device_train_batch_size`: 32
193
+ - `per_device_eval_batch_size`: 32
194
+ - `per_gpu_train_batch_size`: None
195
+ - `per_gpu_eval_batch_size`: None
196
+ - `gradient_accumulation_steps`: 1
197
+ - `eval_accumulation_steps`: None
198
+ - `torch_empty_cache_steps`: None
199
+ - `learning_rate`: 2e-05
200
+ - `weight_decay`: 0.0
201
+ - `adam_beta1`: 0.9
202
+ - `adam_beta2`: 0.999
203
+ - `adam_epsilon`: 1e-08
204
+ - `max_grad_norm`: 1.0
205
+ - `num_train_epochs`: 1
206
+ - `max_steps`: -1
207
+ - `lr_scheduler_type`: cosine_with_restarts
208
+ - `lr_scheduler_kwargs`: {}
209
+ - `warmup_ratio`: 0.1
210
+ - `warmup_steps`: 0
211
+ - `log_level`: passive
212
+ - `log_level_replica`: warning
213
+ - `log_on_each_node`: True
214
+ - `logging_nan_inf_filter`: True
215
+ - `save_safetensors`: True
216
+ - `save_on_each_node`: False
217
+ - `save_only_model`: False
218
+ - `restore_callback_states_from_checkpoint`: False
219
+ - `no_cuda`: False
220
+ - `use_cpu`: False
221
+ - `use_mps_device`: False
222
+ - `seed`: 42
223
+ - `data_seed`: None
224
+ - `jit_mode_eval`: False
225
+ - `use_ipex`: False
226
+ - `bf16`: True
227
+ - `fp16`: False
228
+ - `fp16_opt_level`: O1
229
+ - `half_precision_backend`: auto
230
+ - `bf16_full_eval`: False
231
+ - `fp16_full_eval`: False
232
+ - `tf32`: None
233
+ - `local_rank`: 0
234
+ - `ddp_backend`: None
235
+ - `tpu_num_cores`: None
236
+ - `tpu_metrics_debug`: False
237
+ - `debug`: []
238
+ - `dataloader_drop_last`: False
239
+ - `dataloader_num_workers`: 0
240
+ - `dataloader_prefetch_factor`: None
241
+ - `past_index`: -1
242
+ - `disable_tqdm`: False
243
+ - `remove_unused_columns`: True
244
+ - `label_names`: None
245
+ - `load_best_model_at_end`: False
246
+ - `ignore_data_skip`: False
247
+ - `fsdp`: []
248
+ - `fsdp_min_num_params`: 0
249
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
250
+ - `fsdp_transformer_layer_cls_to_wrap`: None
251
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
252
+ - `deepspeed`: None
253
+ - `label_smoothing_factor`: 0.0
254
+ - `optim`: adamw_torch
255
+ - `optim_args`: None
256
+ - `adafactor`: False
257
+ - `group_by_length`: False
258
+ - `length_column_name`: length
259
+ - `ddp_find_unused_parameters`: None
260
+ - `ddp_bucket_cap_mb`: None
261
+ - `ddp_broadcast_buffers`: False
262
+ - `dataloader_pin_memory`: True
263
+ - `dataloader_persistent_workers`: False
264
+ - `skip_memory_metrics`: True
265
+ - `use_legacy_prediction_loop`: False
266
+ - `push_to_hub`: False
267
+ - `resume_from_checkpoint`: None
268
+ - `hub_model_id`: None
269
+ - `hub_strategy`: every_save
270
+ - `hub_private_repo`: False
271
+ - `hub_always_push`: False
272
+ - `gradient_checkpointing`: False
273
+ - `gradient_checkpointing_kwargs`: None
274
+ - `include_inputs_for_metrics`: False
275
+ - `eval_do_concat_batches`: True
276
+ - `fp16_backend`: auto
277
+ - `push_to_hub_model_id`: None
278
+ - `push_to_hub_organization`: None
279
+ - `mp_parameters`:
280
+ - `auto_find_batch_size`: False
281
+ - `full_determinism`: False
282
+ - `torchdynamo`: None
283
+ - `ray_scope`: last
284
+ - `ddp_timeout`: 1800
285
+ - `torch_compile`: False
286
+ - `torch_compile_backend`: None
287
+ - `torch_compile_mode`: None
288
+ - `dispatch_batches`: None
289
+ - `split_batches`: None
290
+ - `include_tokens_per_second`: False
291
+ - `include_num_input_tokens_seen`: False
292
+ - `neftune_noise_alpha`: None
293
+ - `optim_target_modules`: None
294
+ - `batch_eval_metrics`: False
295
+ - `eval_on_start`: False
296
+ - `use_liger_kernel`: False
297
+ - `eval_use_gather_object`: False
298
+ - `batch_sampler`: no_duplicates
299
+ - `multi_dataset_batch_sampler`: proportional
300
+
301
+ </details>
302
+
303
+ ### Training Logs
304
+ <details><summary>Click to expand</summary>
305
+
306
+ | Epoch | Step | Training Loss |
307
+ |:------:|:----:|:-------------:|
308
+ | 0.0095 | 1 | 2.9432 |
309
+ | 0.0190 | 2 | 3.0121 |
310
+ | 0.0286 | 3 | 2.9051 |
311
+ | 0.0381 | 4 | 2.7906 |
312
+ | 0.0476 | 5 | 2.6592 |
313
+ | 0.0571 | 6 | 2.2835 |
314
+ | 0.0667 | 7 | 2.1373 |
315
+ | 0.0762 | 8 | 1.7872 |
316
+ | 0.0857 | 9 | 1.6329 |
317
+ | 0.0952 | 10 | 1.5184 |
318
+ | 0.1048 | 11 | 1.234 |
319
+ | 0.1143 | 12 | 1.0315 |
320
+ | 0.1238 | 13 | 0.9664 |
321
+ | 0.1333 | 14 | 0.9369 |
322
+ | 0.1429 | 15 | 0.6871 |
323
+ | 0.1524 | 16 | 0.5633 |
324
+ | 0.1619 | 17 | 0.5141 |
325
+ | 0.1714 | 18 | 0.5259 |
326
+ | 0.1810 | 19 | 0.4295 |
327
+ | 0.1905 | 20 | 0.4585 |
328
+ | 0.2 | 21 | 0.2799 |
329
+ | 0.2095 | 22 | 0.4226 |
330
+ | 0.2190 | 23 | 0.2524 |
331
+ | 0.2286 | 24 | 0.2135 |
332
+ | 0.2381 | 25 | 0.1958 |
333
+ | 0.2476 | 26 | 0.1823 |
334
+ | 0.2571 | 27 | 0.393 |
335
+ | 0.2667 | 28 | 0.3186 |
336
+ | 0.2762 | 29 | 0.1414 |
337
+ | 0.2857 | 30 | 0.1927 |
338
+ | 0.2952 | 31 | 0.2597 |
339
+ | 0.3048 | 32 | 0.1291 |
340
+ | 0.3143 | 33 | 0.1488 |
341
+ | 0.3238 | 34 | 0.1203 |
342
+ | 0.3333 | 35 | 0.2001 |
343
+ | 0.3429 | 36 | 0.1877 |
344
+ | 0.3524 | 37 | 0.0713 |
345
+ | 0.3619 | 38 | 0.1778 |
346
+ | 0.3714 | 39 | 0.1179 |
347
+ | 0.3810 | 40 | 0.147 |
348
+ | 0.3905 | 41 | 0.1158 |
349
+ | 0.4 | 42 | 0.1003 |
350
+ | 0.4095 | 43 | 0.158 |
351
+ | 0.4190 | 44 | 0.159 |
352
+ | 0.4286 | 45 | 0.063 |
353
+ | 0.4381 | 46 | 0.1309 |
354
+ | 0.4476 | 47 | 0.0327 |
355
+ | 0.4571 | 48 | 0.1665 |
356
+ | 0.4667 | 49 | 0.1064 |
357
+ | 0.4762 | 50 | 0.0699 |
358
+ | 0.4857 | 51 | 0.0674 |
359
+ | 0.4952 | 52 | 0.0508 |
360
+ | 0.5048 | 53 | 0.0493 |
361
+ | 0.5143 | 54 | 0.0565 |
362
+ | 0.5238 | 55 | 0.0366 |
363
+ | 0.5333 | 56 | 0.0606 |
364
+ | 0.5429 | 57 | 0.0727 |
365
+ | 0.5524 | 58 | 0.092 |
366
+ | 0.5619 | 59 | 0.0628 |
367
+ | 0.5714 | 60 | 0.0369 |
368
+ | 0.5810 | 61 | 0.0889 |
369
+ | 0.5905 | 62 | 0.0409 |
370
+ | 0.6 | 63 | 0.0545 |
371
+ | 0.6095 | 64 | 0.0856 |
372
+ | 0.6190 | 65 | 0.0478 |
373
+ | 0.6286 | 66 | 0.0584 |
374
+ | 0.6381 | 67 | 0.0757 |
375
+ | 0.6476 | 68 | 0.0609 |
376
+ | 0.6571 | 69 | 0.0381 |
377
+ | 0.6667 | 70 | 0.069 |
378
+ | 0.6762 | 71 | 0.0243 |
379
+ | 0.6857 | 72 | 0.0517 |
380
+ | 0.6952 | 73 | 0.0332 |
381
+ | 0.7048 | 74 | 0.0662 |
382
+ | 0.7143 | 75 | 0.0753 |
383
+ | 0.7238 | 76 | 0.0914 |
384
+ | 0.7333 | 77 | 0.1094 |
385
+ | 0.7429 | 78 | 0.0557 |
386
+ | 0.7524 | 79 | 0.0436 |
387
+ | 0.7619 | 80 | 0.0137 |
388
+ | 0.7714 | 81 | 0.0399 |
389
+ | 0.7810 | 82 | 0.0278 |
390
+ | 0.7905 | 83 | 0.0438 |
391
+ | 0.8 | 84 | 0.1392 |
392
+ | 0.8095 | 85 | 0.0299 |
393
+ | 0.8190 | 86 | 0.0667 |
394
+ | 0.8286 | 87 | 0.0404 |
395
+ | 0.8381 | 88 | 0.0166 |
396
+ | 0.8476 | 89 | 0.1679 |
397
+ | 0.8571 | 90 | 0.0282 |
398
+ | 0.8667 | 91 | 0.0628 |
399
+ | 0.8762 | 92 | 0.0618 |
400
+ | 0.8857 | 93 | 0.0167 |
401
+ | 0.8952 | 94 | 0.2108 |
402
+ | 0.9048 | 95 | 0.0749 |
403
+ | 0.9143 | 96 | 0.0997 |
404
+ | 0.9238 | 97 | 0.0675 |
405
+ | 0.9333 | 98 | 0.0409 |
406
+ | 0.9429 | 99 | 0.0355 |
407
+ | 0.9524 | 100 | 0.1391 |
408
+ | 0.9619 | 101 | 0.0938 |
409
+ | 0.9714 | 102 | 0.0526 |
410
+ | 0.9810 | 103 | 0.0035 |
411
+ | 0.9905 | 104 | 0.0022 |
412
+ | 1.0 | 105 | 0.0016 |
413
+
414
+ </details>
415
+
416
+ ### Framework Versions
417
+ - Python: 3.9.19
418
+ - Sentence Transformers: 3.1.1
419
+ - Transformers: 4.45.2
420
+ - PyTorch: 2.5.0
421
+ - Accelerate: 1.0.1
422
+ - Datasets: 2.19.0
423
+ - Tokenizers: 0.20.3
424
+
425
+ ## Citation
426
+
427
+ ### BibTeX
428
+
429
+ #### Sentence Transformers
430
+ ```bibtex
431
+ @inproceedings{reimers-2019-sentence-bert,
432
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
433
+ author = "Reimers, Nils and Gurevych, Iryna",
434
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
435
+ month = "11",
436
+ year = "2019",
437
+ publisher = "Association for Computational Linguistics",
438
+ url = "https://arxiv.org/abs/1908.10084",
439
+ }
440
+ ```
441
+
442
+ #### MultipleNegativesRankingLoss
443
+ ```bibtex
444
+ @misc{henderson2017efficient,
445
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
446
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
447
+ year={2017},
448
+ eprint={1705.00652},
449
+ archivePrefix={arXiv},
450
+ primaryClass={cs.CL}
451
+ }
452
+ ```
453
+
454
+ <!--
455
+ ## Glossary
456
+
457
+ *Clearly define terms in order to be accessible across audiences.*
458
+ -->
459
+
460
+ <!--
461
+ ## Model Card Authors
462
+
463
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
464
+ -->
465
+
466
+ <!--
467
+ ## Model Card Contact
468
+
469
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
470
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "allenai/specter2_base",
3
+ "adapters": {
4
+ "adapters": {},
5
+ "config_map": {},
6
+ "fusion_config_map": {},
7
+ "fusions": {}
8
+ },
9
+ "architectures": [
10
+ "BertModel"
11
+ ],
12
+ "attention_probs_dropout_prob": 0.1,
13
+ "classifier_dropout": null,
14
+ "hidden_act": "gelu",
15
+ "hidden_dropout_prob": 0.1,
16
+ "hidden_size": 768,
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 3072,
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.45.2",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 31090
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.5.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf41cf85b1182745d1af9be640cb3a0cfae661bbd771632fc9c7a2eaddb57599
3
+ size 439696224
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "101": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "102": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "103": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 1000000000000000019884624838656,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff