Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama3
|
3 |
+
library_name: transformers
|
4 |
+
pipeline_tag: text-generation
|
5 |
+
base_model: yentinglin/Llama-3-Taiwan-8B-Instruct-128k
|
6 |
+
language:
|
7 |
+
- zh
|
8 |
+
- en
|
9 |
+
tags:
|
10 |
+
- zhtw
|
11 |
+
---
|
12 |
+
|
13 |
+
# wxxwxxw/Llama-3-Taiwan-8B-Instruct-128k-4bit-AWQ
|
14 |
+
This model is quantized using AWQ in 4 bits; the original model is [`yentinglin/Llama-3-Taiwan-8B-Instruct-128k`](https://huggingface.co/yentinglin/Llama-3-Taiwan-8B-Instruct-128k)
|
15 |
+
|
16 |
+
# quantize
|
17 |
+
```python
|
18 |
+
from awq import AutoAWQForCausalLM
|
19 |
+
from transformers import AutoTokenizer
|
20 |
+
|
21 |
+
model_path = 'yentinglin/Llama-3-Taiwan-8B-Instruct-128k'
|
22 |
+
quant_path = 'Llama-3-Taiwan-8B-Instruct-128k-AWQ'
|
23 |
+
quant_config = { "zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM", "modules_to_not_convert": []}
|
24 |
+
|
25 |
+
model = AutoAWQForCausalLM.from_pretrained(model_path)
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
27 |
+
|
28 |
+
model.quantize(tokenizer, quant_config=quant_config)
|
29 |
+
|
30 |
+
# Save quantized model
|
31 |
+
model.save_quantized(quant_path)
|
32 |
+
tokenizer.save_pretrained(quant_path)
|
33 |
+
```
|
34 |
+
|
35 |
+
# inference with vllm
|
36 |
+
```python
|
37 |
+
from vllm import LLM, SamplingParams
|
38 |
+
|
39 |
+
llm = LLM(model='wxxwxxw/Llama-3-Taiwan-8B-Instruct-128k-4bit-AWQ',
|
40 |
+
quantization="AWQ",
|
41 |
+
tensor_parallel_size=2, # number of gpus
|
42 |
+
gpu_memory_utilization=0.9,
|
43 |
+
dtype='half'
|
44 |
+
)
|
45 |
+
|
46 |
+
tokenizer = llm.get_tokenizer()
|
47 |
+
conversations = tokenizer.apply_chat_template(
|
48 |
+
[{'role': 'user', 'content': "how tall is taipei 101"}],
|
49 |
+
tokenize=False,
|
50 |
+
)
|
51 |
+
|
52 |
+
outputs = llm.generate(
|
53 |
+
[conversations],
|
54 |
+
SamplingParams(
|
55 |
+
temperature=0.5,
|
56 |
+
top_p=0.9,
|
57 |
+
min_tokens=20,
|
58 |
+
max_tokens=1024,
|
59 |
+
)
|
60 |
+
)
|
61 |
+
|
62 |
+
for output in outputs:
|
63 |
+
generated_ids = output.outputs[0].token_ids
|
64 |
+
generated_text = tokenizer.decode(generated_ids, skip_special_tokens=True)
|
65 |
+
print(generated_text)
|
66 |
+
```
|