--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - whisper-event - generated_from_trainer datasets: - asierhv/composite_corpus_eu_v2.1 language: - eu metrics: - wer model-index: - name: Whisper Small Basque results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: eu split: test args: language: eu metrics: - name: Test WER type: wer value: 8.33 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: asierhv/composite_corpus_eu_v2.1 type: asierhv/composite_corpus_eu_v2.1 metrics: - name: Wer type: wer value: 10.886229784051602 --- # Whisper Small Basque This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the asierhv/composite_corpus_eu_v2.1 dataset. It achieves the following results on the evaluation set: - Loss: 0.1836 - Wer: 10.8862 - Wer on Mozilla Common Voice, `test` split: **8.33** ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.3998 | 0.125 | 1000 | 0.3651 | 21.5014 | | 0.1975 | 0.25 | 2000 | 0.2918 | 15.8736 | | 0.1433 | 0.375 | 3000 | 0.2721 | 13.9011 | | 0.1925 | 0.5 | 4000 | 0.2565 | 12.7372 | | 0.0818 | 0.625 | 5000 | 0.2563 | 11.9426 | | 0.1038 | 0.75 | 6000 | 0.2390 | 11.0732 | | 0.1282 | 0.875 | 7000 | 0.2344 | 11.3910 | | 0.0959 | 1.0 | 8000 | 0.1836 | 10.8862 | ### Framework versions - Transformers 4.49.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 3.2.1.dev0 - Tokenizers 0.21.0