xezpeleta commited on
Commit
b86bfef
·
verified ·
1 Parent(s): f7fb7b9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +53 -39
README.md CHANGED
@@ -16,70 +16,84 @@ model-index:
16
  name: Automatic Speech Recognition
17
  type: automatic-speech-recognition
18
  dataset:
19
- name: asierhv/composite_corpus_eu_v2.1
20
- type: asierhv/composite_corpus_eu_v2.1
21
  metrics:
22
  - name: Wer
23
  type: wer
24
- value: 14.849506681653555
 
 
25
  ---
26
 
27
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
- should probably proofread and complete it, then remove this comment. -->
29
-
30
  # Whisper Tiny Basque
31
 
32
- This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the asierhv/composite_corpus_eu_v2.1 dataset.
33
- It achieves the following results on the evaluation set:
34
- - Loss: 0.3719
35
- - Wer: 14.8495
 
 
36
 
37
  ## Model description
38
 
39
- More information needed
40
 
41
  ## Intended uses & limitations
42
 
43
- More information needed
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
  ## Training and evaluation data
46
 
47
- More information needed
 
48
 
49
  ## Training procedure
50
 
51
  ### Training hyperparameters
52
 
53
  The following hyperparameters were used during training:
54
- - learning_rate: 3.75e-05
55
- - train_batch_size: 32
56
- - eval_batch_size: 16
57
- - seed: 42
58
- - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
59
- - lr_scheduler_type: linear
60
- - lr_scheduler_warmup_steps: 1000
61
- - training_steps: 10000
62
- - mixed_precision_training: Native AMP
63
 
64
- ### Training results
 
 
 
 
 
 
 
 
65
 
66
- | Training Loss | Epoch | Step | Validation Loss | Wer |
67
- |:-------------:|:-----:|:-----:|:---------------:|:-------:|
68
- | 0.586 | 0.1 | 1000 | 0.6249 | 34.1639 |
69
- | 0.3145 | 0.2 | 2000 | 0.5048 | 25.2591 |
70
- | 0.225 | 0.3 | 3000 | 0.4839 | 22.0557 |
71
- | 0.3003 | 0.4 | 4000 | 0.4540 | 20.3072 |
72
- | 0.132 | 0.5 | 5000 | 0.4574 | 19.0146 |
73
- | 0.1588 | 0.6 | 6000 | 0.4380 | 17.8219 |
74
- | 0.1841 | 0.7 | 7000 | 0.4395 | 16.6667 |
75
- | 0.143 | 0.8 | 8000 | 0.3719 | 15.4490 |
76
- | 0.0967 | 0.9 | 9000 | 0.3685 | 15.1368 |
77
- | 0.1059 | 1.0 | 10000 | 0.3719 | 14.8495 |
78
 
 
 
 
 
 
 
 
 
 
 
 
 
79
 
80
  ### Framework versions
81
 
82
- - Transformers 4.49.0.dev0
83
- - Pytorch 2.6.0+cu124
84
- - Datasets 3.3.1.dev0
85
- - Tokenizers 0.21.0
 
16
  name: Automatic Speech Recognition
17
  type: automatic-speech-recognition
18
  dataset:
19
+ name: Mozilla Common Voice 18.0
20
+ type: mozilla-foundation/common_voice_18_0
21
  metrics:
22
  - name: Wer
23
  type: wer
24
+ value: 13.56
25
+ language:
26
+ - eu
27
  ---
28
 
 
 
 
29
  # Whisper Tiny Basque
30
 
31
+ This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) specifically for Basque (eu) language Automatic Speech Recognition (ASR). It was trained on the [asierhv/composite_corpus_eu_v2.1](https://huggingface.co/datasets/asierhv/composite_corpus_eu_v2.1) dataset, which is a composite corpus designed to improve Basque ASR performance.
32
+
33
+ **Key improvements and results compared to the base model:**
34
+
35
+ * **Significant WER reduction:** The fine-tuned model achieves a Word Error Rate (WER) of 14.8495 on the validation set of the `asierhv/composite_corpus_eu_v2.1` dataset, demonstrating improved accuracy compared to the base `whisper-tiny` model for Basque.
36
+ * **Performance on Common Voice:** When evaluated on the Mozilla Common Voice 18.0 dataset, the model achieved a WER of 13.56. This demonstrates the model's ability to generalize to other Basque speech datasets.
37
 
38
  ## Model description
39
 
40
+ This model leverages the power of the Whisper architecture, originally developed by OpenAI, and adapts it to the specific nuances of the Basque language. By fine-tuning the `whisper-tiny` model on a comprehensive Basque speech corpus, it learns to accurately transcribe spoken Basque. The `whisper-tiny` model is the smallest of the whisper models, providing a good balance between speed and accuracy.
41
 
42
  ## Intended uses & limitations
43
 
44
+ **Intended uses:**
45
+
46
+ * Automatic transcription of Basque speech.
47
+ * Development of Basque speech-based applications.
48
+ * Research on Basque speech processing.
49
+ * Accessibility tools for Basque speakers.
50
+
51
+ **Limitations:**
52
+
53
+ * Performance may vary depending on the quality of the audio input (e.g., background noise, recording quality).
54
+ * The model might struggle with highly dialectal or informal speech.
55
+ * While the model shows improved performance, it may still produce errors, especially with complex sentences or uncommon words.
56
+ * The model is based on the small version of whisper, and thus, accuracy may be improved with larger models.
57
 
58
  ## Training and evaluation data
59
 
60
+ * **Training dataset:** [asierhv/composite_corpus_eu_v2.1](https://huggingface.co/datasets/asierhv/composite_corpus_eu_v2.1). This dataset is a composite corpus of Basque speech data, designed to improve the performance of Basque ASR systems.
61
+ * **Evaluation Dataset:** The `test` portion of `asierhv/composite_corpus_eu_v2.1`.
62
 
63
  ## Training procedure
64
 
65
  ### Training hyperparameters
66
 
67
  The following hyperparameters were used during training:
 
 
 
 
 
 
 
 
 
68
 
69
+ * **learning_rate:** 3.75e-05
70
+ * **train_batch_size:** 32
71
+ * **eval_batch_size:** 16
72
+ * **seed:** 42
73
+ * **optimizer:** AdamW with betas=(0.9, 0.999) and epsilon=1e-08
74
+ * **lr_scheduler_type:** linear
75
+ * **lr_scheduler_warmup_steps:** 1000
76
+ * **training_steps:** 10000
77
+ * **mixed_precision_training:** Native AMP
78
 
79
+ ### Training results
 
 
 
 
 
 
 
 
 
 
 
80
 
81
+ | Training Loss | Epoch | Step | Validation Loss | WER |
82
+ |---------------|-------|-------|-----------------|----------|
83
+ | 0.586 | 0.1 | 1000 | 0.6249 | 34.1639 |
84
+ | 0.3145 | 0.2 | 2000 | 0.5048 | 25.2591 |
85
+ | 0.225 | 0.3 | 3000 | 0.4839 | 22.0557 |
86
+ | 0.3003 | 0.4 | 4000 | 0.4540 | 20.3072 |
87
+ | 0.132 | 0.5 | 5000 | 0.4574 | 19.0146 |
88
+ | 0.1588 | 0.6 | 6000 | 0.4380 | 17.8219 |
89
+ | 0.1841 | 0.7 | 7000 | 0.4395 | 16.6667 |
90
+ | 0.143 | 0.8 | 8000 | 0.3719 | 15.4490 |
91
+ | 0.0967 | 0.9 | 9000 | 0.3685 | 15.1368 |
92
+ | 0.1059 | 1.0 | 10000 | 0.3719 | 14.8495 |
93
 
94
  ### Framework versions
95
 
96
+ * Transformers 4.49.0.dev0
97
+ * Pytorch 2.6.0+cu124
98
+ * Datasets 3.3.1.dev0
99
+ * Tokenizers 0.21.0