Oscar Wu commited on
Commit
97f1188
·
1 Parent(s): 78dc976

Updated README

Browse files
Files changed (1) hide show
  1. README.md +9 -9
README.md CHANGED
@@ -14,13 +14,14 @@ This repository contains [`mistralai/Mistral-Small-Instruct-2409`](https://huggi
14
  1. **Memory-efficiency:** The full-precision model is around 44 GB, while this xMADified model is only 12 GB, making it feasible to run on a 16 GB GPU.
15
 
16
  2. **Accuracy:** This xMADified model preserves the quality of the full-precision model. In the table below, we present the zero-shot accuracy on popular benchmarks of this xMADified model against the [GPTQ](https://github.com/AutoGPTQ/AutoGPTQ)-quantized model, and the full-precision model. The GPTQ model fails on the difficult **MMLU** task, while the xMADai model offers significantly higher accuracy.
17
- | Model | Size | MMLU | Arc Challenge | Arc Easy | LAMBADA | WinoGrande | PIQA |
18
- |---|---|---|---|---|---|---|---|
19
- | mistralai/Mistral-Small-Instruct-2409 | 44.5 GB | 69.48 | 58.79 | 84.72 | 79.06 | 79.08 | 82.43 |
20
- | GPTQ Mistral-Small-Instruct-2409 | 12.2 GB | 49.45 | 56.14 | 80.64 | 75.1 | 77.74 | 77.48 |
21
- | xMADified Mistral-Small-Instruct-2409 (this model) | 12.2 GB | **68.59** | **57.51** | **82.83** | **77.74** | **79.56** | **81.34** |
22
 
23
- 3. **Fine-tuning**: These models are fine-tunable over the same reduced (12 GB) hardware in mere 3-clicks. Watch our product demo [here](https://www.youtube.com/watch?v=S0wX32kT90s&list=TLGGL9fvmJ-d4xsxODEwMjAyNA)
 
 
 
 
 
 
24
 
25
  # How to Run Model
26
 
@@ -28,8 +29,7 @@ Loading the model checkpoint of this xMADified model requires less than 12 GiB o
28
 
29
  **Package prerequisites**: Run the following commands to install the required packages.
30
  ```bash
31
- pip install -q --upgrade transformers accelerate optimum
32
- pip install -q --no-build-isolation auto-gptq
33
  ```
34
 
35
  **Sample Inference Code**
@@ -70,4 +70,4 @@ Here's a sample output of the model, using the code above:
70
 
71
  # Contact Us
72
 
73
- For additional xMADified models, access to fine-tuning, and general questions, please contact us at [email protected] and join our waiting list.
 
14
  1. **Memory-efficiency:** The full-precision model is around 44 GB, while this xMADified model is only 12 GB, making it feasible to run on a 16 GB GPU.
15
 
16
  2. **Accuracy:** This xMADified model preserves the quality of the full-precision model. In the table below, we present the zero-shot accuracy on popular benchmarks of this xMADified model against the [GPTQ](https://github.com/AutoGPTQ/AutoGPTQ)-quantized model, and the full-precision model. The GPTQ model fails on the difficult **MMLU** task, while the xMADai model offers significantly higher accuracy.
 
 
 
 
 
17
 
18
+ | Model | Size | MMLU | Arc Challenge | Arc Easy | LAMBADA | WinoGrande | PIQA |
19
+ | -------------------------------------------------- | ------- | --------- | ------------- | --------- | --------- | ---------- | --------- |
20
+ | xMADified Mistral-Small-Instruct-2409 (this model) | 12.2 GB | **68.59** | **57.51** | **82.83** | **77.74** | **79.56** | **81.34** |
21
+ | mistralai/Mistral-Small-Instruct-2409 | 44.5 GB | 69.48 | 58.79 | 84.72 | 79.06 | 79.08 | 82.43 |
22
+ | GPTQ Mistral-Small-Instruct-2409 | 12.2 GB | 49.45 | 56.14 | 80.64 | 75.1 | 77.74 | 77.48 |
23
+
24
+ 1. **Fine-tuning**: These models are fine-tunable over the same reduced (12 GB) hardware in mere 3-clicks. Watch our product demo [here](https://www.youtube.com/watch?v=S0wX32kT90s&list=TLGGL9fvmJ-d4xsxODEwMjAyNA)
25
 
26
  # How to Run Model
27
 
 
29
 
30
  **Package prerequisites**: Run the following commands to install the required packages.
31
  ```bash
32
+ pip install torch==2.4.0 transformers accelerate optimum && pip install -vvv --no-build-isolation "git+https://github.com/PanQiWei/[email protected]"
 
33
  ```
34
 
35
  **Sample Inference Code**
 
70
 
71
  # Contact Us
72
 
73
+ For additional xMADified models, access to fine-tuning, and general questions, please contact us at [email protected] and join our waiting list.