--- language: - zh license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer base_model: openai/whisper-tiny model-index: - name: Whisper Tiny Chinese results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: mozilla-foundation/common_voice_11_0 zh-CN type: mozilla-foundation/common_voice_11_0 config: zh-CN split: test args: zh-CN metrics: - type: wer value: 91.09343588847129 name: Wer --- # Whisper Tiny Chinese This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the mozilla-foundation/common_voice_11_0 zh-CN dataset. It achieves the following results on the evaluation set: - Loss: 0.6121 - Wer: 91.0934 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.9397 | 2.02 | 1000 | 0.6568 | 98.7326 | | 0.5387 | 4.04 | 2000 | 0.6149 | 94.5197 | | 0.3317 | 6.06 | 3000 | 0.6080 | 95.0354 | | 0.225 | 8.07 | 4000 | 0.6121 | 91.0934 | | 0.3166 | 11.0 | 5000 | 0.6092 | 92.3171 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2