|
SYSTEM = '' |
|
accumulative_counts = 16 |
|
batch_size = 1 |
|
betas = ( |
|
0.9, |
|
0.999, |
|
) |
|
custom_hooks = [ |
|
dict( |
|
tokenizer=dict( |
|
padding_side='right', |
|
pretrained_model_name_or_path='internlm/internlm2-chat-7b', |
|
trust_remote_code=True, |
|
type='transformers.AutoTokenizer.from_pretrained'), |
|
type='xtuner.engine.DatasetInfoHook'), |
|
dict( |
|
evaluation_inputs=[ |
|
'请给我介绍五个上海的景点', |
|
'Please tell me five scenic spots in Shanghai', |
|
], |
|
every_n_iters=500, |
|
prompt_template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat', |
|
system='', |
|
tokenizer=dict( |
|
padding_side='right', |
|
pretrained_model_name_or_path='internlm/internlm2-chat-7b', |
|
trust_remote_code=True, |
|
type='transformers.AutoTokenizer.from_pretrained'), |
|
type='xtuner.engine.EvaluateChatHook'), |
|
] |
|
data_path = 'timdettmers/openassistant-guanaco' |
|
dataloader_num_workers = 0 |
|
default_hooks = dict( |
|
checkpoint=dict(interval=1, type='mmengine.hooks.CheckpointHook'), |
|
logger=dict(interval=10, type='mmengine.hooks.LoggerHook'), |
|
param_scheduler=dict(type='mmengine.hooks.ParamSchedulerHook'), |
|
sampler_seed=dict(type='mmengine.hooks.DistSamplerSeedHook'), |
|
timer=dict(type='mmengine.hooks.IterTimerHook')) |
|
env_cfg = dict( |
|
cudnn_benchmark=False, |
|
dist_cfg=dict(backend='nccl'), |
|
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0)) |
|
evaluation_freq = 500 |
|
evaluation_inputs = [ |
|
'请给我介绍五个上海的景点', |
|
'Please tell me five scenic spots in Shanghai', |
|
] |
|
launcher = 'none' |
|
load_from = None |
|
log_level = 'INFO' |
|
lr = 0.0002 |
|
max_epochs = 3 |
|
max_length = 2048 |
|
max_norm = 1 |
|
model = dict( |
|
llm=dict( |
|
pretrained_model_name_or_path='internlm/internlm2-chat-7b', |
|
quantization_config=dict( |
|
bnb_4bit_compute_dtype='torch.float16', |
|
bnb_4bit_quant_type='nf4', |
|
bnb_4bit_use_double_quant=True, |
|
llm_int8_has_fp16_weight=False, |
|
llm_int8_threshold=6.0, |
|
load_in_4bit=True, |
|
load_in_8bit=False, |
|
type='transformers.BitsAndBytesConfig'), |
|
torch_dtype='torch.float16', |
|
trust_remote_code=True, |
|
type='transformers.AutoModelForCausalLM.from_pretrained'), |
|
lora=dict( |
|
bias='none', |
|
lora_alpha=16, |
|
lora_dropout=0.1, |
|
r=64, |
|
task_type='CAUSAL_LM', |
|
type='peft.LoraConfig'), |
|
type='xtuner.model.SupervisedFinetune') |
|
optim_type = 'torch.optim.AdamW' |
|
optim_wrapper = dict( |
|
accumulative_counts=16, |
|
clip_grad=dict(error_if_nonfinite=False, max_norm=1), |
|
dtype='float16', |
|
loss_scale='dynamic', |
|
optimizer=dict( |
|
betas=( |
|
0.9, |
|
0.999, |
|
), |
|
lr=0.0002, |
|
type='torch.optim.AdamW', |
|
weight_decay=0), |
|
type='mmengine.optim.AmpOptimWrapper') |
|
pack_to_max_length = True |
|
param_scheduler = [ |
|
dict( |
|
begin=0, |
|
by_epoch=True, |
|
convert_to_iter_based=True, |
|
end=0.09, |
|
start_factor=1e-05, |
|
type='mmengine.optim.LinearLR'), |
|
dict( |
|
T_max=3, |
|
begin=0.09, |
|
by_epoch=True, |
|
convert_to_iter_based=True, |
|
eta_min=0.0, |
|
type='mmengine.optim.CosineAnnealingLR'), |
|
] |
|
pretrained_model_name_or_path = 'internlm/internlm2-chat-7b' |
|
prompt_template = 'xtuner.utils.PROMPT_TEMPLATE.internlm2_chat' |
|
randomness = dict(deterministic=False, seed=None) |
|
resume = False |
|
tokenizer = dict( |
|
padding_side='right', |
|
pretrained_model_name_or_path='internlm/internlm2-chat-7b', |
|
trust_remote_code=True, |
|
type='transformers.AutoTokenizer.from_pretrained') |
|
train_cfg = dict(by_epoch=True, max_epochs=3, val_interval=1) |
|
train_dataloader = dict( |
|
batch_size=1, |
|
collate_fn=dict(type='xtuner.dataset.collate_fns.default_collate_fn'), |
|
dataset=dict( |
|
dataset=dict( |
|
path='timdettmers/openassistant-guanaco', |
|
type='datasets.load_dataset'), |
|
dataset_map_fn='xtuner.dataset.map_fns.oasst1_map_fn', |
|
max_length=2048, |
|
pack_to_max_length=True, |
|
remove_unused_columns=True, |
|
shuffle_before_pack=True, |
|
template_map_fn=dict( |
|
template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat', |
|
type='xtuner.dataset.map_fns.template_map_fn_factory'), |
|
tokenizer=dict( |
|
padding_side='right', |
|
pretrained_model_name_or_path='internlm/internlm2-chat-7b', |
|
trust_remote_code=True, |
|
type='transformers.AutoTokenizer.from_pretrained'), |
|
type='xtuner.dataset.process_hf_dataset'), |
|
num_workers=0, |
|
sampler=dict(shuffle=True, type='mmengine.dataset.DefaultSampler')) |
|
train_dataset = dict( |
|
dataset=dict( |
|
path='timdettmers/openassistant-guanaco', |
|
type='datasets.load_dataset'), |
|
dataset_map_fn='xtuner.dataset.map_fns.oasst1_map_fn', |
|
max_length=2048, |
|
pack_to_max_length=True, |
|
remove_unused_columns=True, |
|
shuffle_before_pack=True, |
|
template_map_fn=dict( |
|
template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat', |
|
type='xtuner.dataset.map_fns.template_map_fn_factory'), |
|
tokenizer=dict( |
|
padding_side='right', |
|
pretrained_model_name_or_path='internlm/internlm2-chat-7b', |
|
trust_remote_code=True, |
|
type='transformers.AutoTokenizer.from_pretrained'), |
|
type='xtuner.dataset.process_hf_dataset') |
|
visualizer = None |
|
warmup_ratio = 0.03 |
|
weight_decay = 0 |
|
work_dir = './work_dirs/internlm2_chat_7b_qlora_oasst1_e3' |
|
|